Johansson Björn, Hahn-Hägerdal Bärbel
Department of Applied Microbiology, Lund University, P.O. Box 124, Sweden.
FEMS Yeast Res. 2002 Aug;2(3):277-82. doi: 10.1111/j.1567-1364.2002.tb00095.x.
Saccharomyces cerevisiae is able to ferment xylose, when engineered with the enzymes xylose reductase (XYL1) and xylitol dehydrogenase (XYL2). However, xylose fermentation is one to two orders of magnitude slower than glucose fermentation. S. cerevisiae has been proposed to have an insufficient capacity of the non-oxidative pentose phosphate pathway (PPP) for rapid xylose fermentation. Strains overproducing the non-oxidative PPP enzymes ribulose 5-phosphate epimerase (EC 5.1.3.1), ribose 5-phosphate ketol isomerase (EC 5.3.1.6), transaldolase (EC 2.2.1.2) and transketolase (EC 2.2.1.1), as well as all four enzymes simultaneously, were compared with respect to xylose and xylulose fermentation with their xylose-fermenting predecessor S. cerevisiae TMB3001, expressing XYL1, XYL2 and only overexpressing XKS1 (xylulokinase). The level of overproduction in S. cerevisiae TMB3026, overproducing all four non-oxidative PPP enzymes, ranged between 4 and 23 times the level in TMB3001. Overproduction of the non-oxidative PPP enzymes did not influence the xylose fermentation rate in either batch cultures of 50 g l(-1) xylose or chemostat cultures of 20 g l(-1) glucose and 20 g l(-1) xylose. The low specific growth rate on xylose was also unaffected. The results suggest that neither of the non-oxidative PPP enzymes has any significant control of the xylose fermentation rate in S. cerevisiae TMB3001. However, the specific growth rate on xylulose increased from 0.02-0.03 for TMB3001 to 0.12 for the strain overproducing only transaldolase (TAL1) and to 0.23 for TMB3026, suggesting that overproducing all four enzymes has a synergistic effect. TMB3026 consumed xylulose about two times faster than TMB30001 in batch culture of 50 g l(-1) xylulose. The results indicate that growth on xylulose and the xylulose fermentation rate are partly controlled by the non-oxidative PPP, whereas control of the xylose fermentation rate is situated upstream of xylulokinase, in xylose transport, in xylose reductase, and/or in the xylitol dehydrogenase.
酿酒酵母在导入木糖还原酶(XYL1)和木糖醇脱氢酶(XYL2)后能够发酵木糖。然而,木糖发酵速度比葡萄糖发酵慢一到两个数量级。有人提出酿酒酵母的非氧化戊糖磷酸途径(PPP)能力不足,无法快速进行木糖发酵。将过量表达非氧化PPP酶核糖-5-磷酸表异构酶(EC 5.1.3.1)、核糖-5-磷酸酮醇异构酶(EC 5.3.1.6)、转醛醇酶(EC 2.2.1.2)和转酮醇酶(EC 2.2.1.1)的菌株,以及同时过量表达这四种酶的菌株,与它们的木糖发酵前身、表达XYL1、XYL2且仅过表达XKS1(木酮糖激酶)的酿酒酵母TMB3001进行木糖和木酮糖发酵比较。在酿酒酵母TMB3026中,所有四种非氧化PPP酶均过量表达,其过量表达水平在TMB3001的4至23倍之间。在50 g l(-1)木糖的分批培养或20 g l(-1)葡萄糖和20 g l(-1)木糖的恒化器培养中,非氧化PPP酶的过量表达均未影响木糖发酵速率。木糖上的低比生长速率也未受影响。结果表明,在酿酒酵母TMB3001中,非氧化PPP酶均未对木糖发酵速率有任何显著控制作用。然而,木酮糖上的比生长速率从TMB3001的0.02 - 0.03增加到仅过量表达转醛醇酶(TAL1)的菌株的0.12,以及TMB3026的0.23,这表明过量表达所有四种酶具有协同效应。在50 g l(-1)木酮糖的分批培养中,TMB3026消耗木酮糖的速度比TMB30001快约两倍。结果表明,木酮糖上生长和木酮糖发酵速率部分受非氧化PPP控制,而木糖发酵速率的控制位于木酮糖激酶上游、木糖转运、木糖还原酶和/或木糖醇脱氢酶中。