Delft University of Technology, Department of Biotechnology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
FEMS Yeast Res. 2018 Sep 1;18(6). doi: 10.1093/femsyr/foy056.
Simultaneous fermentation of glucose and xylose can contribute to improved productivity and robustness of yeast-based processes for bioethanol production from lignocellulosic hydrolysates. This study explores a novel laboratory evolution strategy for identifying mutations that contribute to simultaneous utilisation of these sugars in batch cultures of Saccharomyces cerevisiae. To force simultaneous utilisation of xylose and glucose, the genes encoding glucose-6-phosphate isomerase (PGI1) and ribulose-5-phosphate epimerase (RPE1) were deleted in a xylose-isomerase-based xylose-fermenting strain with a modified oxidative pentose-phosphate pathway. Laboratory evolution of this strain in serial batch cultures on glucose-xylose mixtures yielded mutants that rapidly co-consumed the two sugars. Whole-genome sequencing of evolved strains identified mutations in HXK2, RSP5 and GAL83, whose introduction into a non-evolved xylose-fermenting S. cerevisiae strain improved co-consumption of xylose and glucose under aerobic and anaerobic conditions. Combined deletion of HXK2 and introduction of a GAL83G673T allele yielded a strain with a 2.5-fold higher xylose and glucose co-consumption ratio than its xylose-fermenting parental strain. These two modifications decreased the time required for full sugar conversion in anaerobic bioreactor batch cultures, grown on 20 g L-1 glucose and 10 g L-1 xylose, by over 24 h. This study demonstrates that laboratory evolution and genome resequencing of microbial strains engineered for forced co-consumption is a powerful approach for studying and improving simultaneous conversion of mixed substrates.
葡萄糖和木糖的同步发酵可以提高基于酵母的木质纤维素水解物生产生物乙醇工艺的生产力和稳健性。本研究探索了一种新的实验室进化策略,用于鉴定有助于在酿酒酵母分批培养中同时利用这些糖的突变。为了强制同时利用木糖和葡萄糖,在具有改良氧化戊糖磷酸途径的基于木糖异构酶的木糖发酵菌株中,缺失了编码葡萄糖-6-磷酸异构酶(PGI1)和核酮糖-5-磷酸差向异构酶(RPE1)的基因。在葡萄糖-木糖混合物的连续分批培养中对该菌株进行实验室进化,产生了能够快速共消耗两种糖的突变体。进化菌株的全基因组测序鉴定了 HXK2、RSP5 和 GAL83 中的突变,将其引入未经进化的木糖发酵酿酒酵母菌株中,可改善需氧和厌氧条件下木糖和葡萄糖的共消耗。HXK2 的联合缺失和 GAL83G673T 等位基因的引入使共消耗木糖和葡萄糖的比例比其木糖发酵亲本菌株提高了 2.5 倍。这两个修饰降低了在以 20 g L-1 葡萄糖和 10 g L-1 木糖为底物的厌氧生物反应器分批培养中完全糖转化所需的时间,超过 24 小时。本研究表明,用于强制共消耗的微生物菌株的实验室进化和基因组重测序是研究和改善混合底物同时转化的有力方法。