Jinno Shozo, Ishizuka Satoru, Kosaka Toshio
Kyushu University, Department of Anatomy & Neurobiology, Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
Eur J Neurosci. 2003 Apr;17(7):1338-54. doi: 10.1046/j.1460-9568.2003.02569.x.
The electrophysiological properties of mossy cells were examined in developing mouse hippocampal slices using whole-cell patch-clamp techniques, with particular reference to the dorsoventral difference. Dorsal mossy cells exhibited a higher spontaneous excitatory postsynaptic potential (EPSP) frequency and larger maximal EPSP amplitude than ventral mossy cells. On the other hand, the blockade of synaptic inputs with glutamatergic and GABAergic antagonists disclosed a remarkable dorsoventral difference in the intrinsic activity: none (0/27) of the dorsal mossy cells showed intrinsic bursting, whereas the majority (35/47) of the ventral mossy cells exhibited intrinsic rhythmic bursting. To characterize the ionic currents underlying the rhythmic bursting of mossy cells, we used somatic voltage-clamp recordings in the subthreshold voltage range. Ventral bursting cells possessed both hyperpolarization-activated current (Ih) and persistent sodium current (INaP), whereas dorsal and ventral nonbursting cells possessed Ih but no INaP. Blockade of Ih with cesium did not affect the intrinsic bursting of ventral mossy cells. In contrast, the blockade of INaP with tetrodotoxin or phenytoin established a stable subthreshold membrane potential in ventral bursting cells. The current-voltage curve of ventral bursting cells showed a region of tetrodotoxin-sensitive negative slope conductance between -55 mV and a spike threshold ( approximately -45 mV). On the other hand, no subthreshold calcium conductances played a significant role in the intrinsic bursting of ventral mossy cells. These observations demonstrate the heterogeneous electrophysiological properties of hilar mossy cells, and suggest that the subthreshold INaP plays a major role in the intrinsic rhythmic bursting of ventral mossy cells.
运用全细胞膜片钳技术,在发育中的小鼠海马切片中检测苔藓细胞的电生理特性,特别关注背腹差异。与腹侧苔藓细胞相比,背侧苔藓细胞表现出更高的自发兴奋性突触后电位(EPSP)频率和更大的最大EPSP振幅。另一方面,用谷氨酸能和γ-氨基丁酸能拮抗剂阻断突触输入后,发现内在活性存在显著的背腹差异:背侧苔藓细胞无一(0/27)表现出内在爆发性放电,而大多数腹侧苔藓细胞(35/47)表现出内在节律性爆发性放电。为了表征苔藓细胞节律性爆发性放电背后的离子电流,我们在阈下电压范围内进行了体细胞电压钳记录。腹侧爆发性放电细胞同时具有超极化激活电流(Ih)和持续性钠电流(INaP),而背侧和腹侧非爆发性放电细胞具有Ih但没有INaP。用铯阻断Ih并不影响腹侧苔藓细胞的内在爆发性放电。相反,用河豚毒素或苯妥英阻断INaP可使腹侧爆发性放电细胞建立稳定的阈下膜电位。腹侧爆发性放电细胞的电流-电压曲线在-55 mV至动作电位阈值(约-45 mV)之间显示出一个对河豚毒素敏感的负斜率电导区域。另一方面,阈下钙电导在腹侧苔藓细胞的内在爆发性放电中不起重要作用。这些观察结果证明了海马门区苔藓细胞电生理特性的异质性,并表明阈下INaP在腹侧苔藓细胞的内在节律性爆发性放电中起主要作用。