Suppr超能文献

α-螺旋、3(10)-螺旋和π-螺旋在螺旋向卷曲转变中的作用。

The role of alpha-, 3(10)-, and pi-helix in helix-->coil transitions.

作者信息

Armen Roger, Alonso Darwin O V, Daggett Valerie

机构信息

Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, USA.

出版信息

Protein Sci. 2003 Jun;12(6):1145-57. doi: 10.1110/ps.0240103.

Abstract

The conformational equilibrium between 3(10)- and alpha-helical structure has been studied via high-resolution NMR spectroscopy by Millhauser and coworkers using the MW peptide Ac-AMAAKAWAAKA AAARA-NH2. Their 750-MHz nuclear Overhauser effect spectroscopy (NOESY) spectra were interpreted to reflect appreciable populations of 3(10)-helix throughout the peptide, with the greatest contribution at the N and C termini. The presence of simultaneous alphaN(i,i + 2) and alphaN(i,i + 4) NOE cross-peaks was proposed to represent conformational averaging between 3(10)- and alpha-helical structures. In this study, we describe 25-nsec molecular dynamics simulations of the MW peptide at 298 K, using both an 8 A and a 10 A force-shifted nonbonded cutoff. The ensemble averages of both simulations are in reasonable agreement with the experimental helical content from circular dichroism (CD), the (3)J(HNalpha) coupling constants, and the 57 observed NOEs. Analysis of the structures from both simulations revealed very little formation of contiguous i --> i + 3 hydrogen bonds (3(10)-helix); however, there was a large population of bifurcated i --> i + 3 and i --> i + 4 alpha-helical hydrogen bonds. In addition, both simulations contained considerable populations of pi-helix (i --> i + 5 hydrogen bonds). Individual turns formed over residues 1-9, which we predict contribute to the intensities of the experimentally observed alphaN(i,i + 2) NOEs. Here we show how sampling of both folded and unfolded structures can provide a structural framework for deconvolution of the conformational contributions to experimental ensemble averages.

摘要

米尔豪泽及其同事使用MW肽Ac-AMAAKAWAAKA AAARA-NH2,通过高分辨率核磁共振光谱研究了3(10)-螺旋结构和α-螺旋结构之间的构象平衡。他们对750兆赫的核Overhauser效应光谱(NOESY)进行了解释,以反映整个肽中3(10)-螺旋的可观比例,在N端和C端贡献最大。同时存在的αN(i,i + 2)和αN(i,i + 4) NOE交叉峰被认为代表了3(10)-螺旋结构和α-螺旋结构之间的构象平均。在本研究中,我们描述了MW肽在298 K下的25纳秒分子动力学模拟,使用了8埃和10埃的力移非键截止。两个模拟的系综平均值与圆二色性(CD)实验得到的螺旋含量、(3)J(HNα)耦合常数以及57个观察到的NOE合理一致。对两个模拟得到的结构分析表明,几乎没有形成连续的i --> i + 3氢键(3(10)-螺旋);然而,有大量的分叉i --> i + 3和i --> i + 4α-螺旋氢键。此外,两个模拟都包含相当数量的π-螺旋(i --> i + 5氢键)。在残基1-9上形成了单个转角,我们预测这有助于实验观察到的αN(i,i + 2) NOE的强度。在这里,我们展示了对折叠和未折叠结构的采样如何为构象对实验系综平均值的贡献解卷积提供一个结构框架。

相似文献

1
The role of alpha-, 3(10)-, and pi-helix in helix-->coil transitions.
Protein Sci. 2003 Jun;12(6):1145-57. doi: 10.1110/ps.0240103.
3
Helix formation in a pentapeptide: experiment and force-field dependent dynamics.
J Phys Chem A. 2010 Dec 2;114(47):12391-402. doi: 10.1021/jp102612d. Epub 2010 Nov 8.
4
Helix bending in alamethicin: molecular dynamics simulations and amide hydrogen exchange in methanol.
Biophys J. 1997 Jun;72(6):2490-5. doi: 10.1016/S0006-3495(97)78893-3.
5
Discriminating the helical forms of peptides by NMR and molecular dynamics simulation.
J Am Chem Soc. 2004 Aug 25;126(33):10478-84. doi: 10.1021/ja0484146.

引用本文的文献

2
The cyanobacterial circadian clock.
NPJ Biol Timing Sleep. 2025;2(1):26. doi: 10.1038/s44323-025-00042-4. Epub 2025 Jun 30.
4
Structural and biological characterization of shortened derivatives of the cathelicidin PMAP-36.
Sci Rep. 2023 Sep 13;13(1):15132. doi: 10.1038/s41598-023-41945-1.
7
Peptidic Scaffolds Enable Rapid and Multivariate Secondary Sphere Evolution for an Abiotic Metallocatalyst.
Inorg Chem. 2022 May 2;61(17):6679-6687. doi: 10.1021/acs.inorgchem.2c00901. Epub 2022 Apr 21.
8
Quantitative Assessment of Chirality of Protein Secondary Structures and Phenylalanine Peptide Nanotubes.
Nanomaterials (Basel). 2021 Dec 5;11(12):3299. doi: 10.3390/nano11123299.
9
The Ca response of a smart forisome protein is dependent on polymerization.
Protein Sci. 2022 Mar;31(3):602-612. doi: 10.1002/pro.4256. Epub 2021 Dec 18.
10
Energetics and structure of alanine-rich α-helices via adaptive steered molecular dynamics.
Biophys J. 2021 May 18;120(10):2009-2018. doi: 10.1016/j.bpj.2021.03.017. Epub 2021 Mar 26.

本文引用的文献

1
Generalized Mathematical Relationships for Polypeptide Chain Helices: The Coordinates of the II Helix.
Proc Natl Acad Sci U S A. 1953 Aug;39(8):785-801. doi: 10.1073/pnas.39.8.785.
2
The complete folding pathway of a protein from nanoseconds to microseconds.
Nature. 2003 Feb 20;421(6925):863-7. doi: 10.1038/nature01428.
4
Early events in protein folding.
Curr Opin Struct Biol. 2003 Feb;13(1):75-81. doi: 10.1016/s0959-440x(02)00009-x.
5
Helix-coil transitions re-visited.
Biophys Chem. 2002 Dec 10;101-102:255-65. doi: 10.1016/s0301-4622(02)00175-8.
6
Occurrence, conformational features and amino acid propensities for the pi-helix.
Protein Eng. 2002 May;15(5):353-8. doi: 10.1093/protein/15.5.353.
7
Helix formation via conformation diffusion search.
Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):2788-93. doi: 10.1073/pnas.052700099. Epub 2002 Feb 26.
8
Alpha-helical stabilization by side chain shielding of backbone hydrogen bonds.
Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):2782-7. doi: 10.1073/pnas.042496899. Epub 2002 Feb 26.
9
Time-resolved infrared study of the helix-coil transition using (13)C-labeled helical peptides.
J Am Chem Soc. 2001 Dec 5;123(48):12111-2. doi: 10.1021/ja016631q.
10
Temperature-dependent helix-coil transition of an alanine based peptide.
J Am Chem Soc. 2001 Sep 26;123(38):9235-8. doi: 10.1021/ja0158814.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验