Ko Hyejin, Hogan Joseph W, Mayer Kenneth H
Samsung SDS, Ltd., 707-19, Yoksam-Dong, Kangnam-Gu, Seoul 135-918, South Korea.
Biometrics. 2003 Mar;59(1):152-62. doi: 10.1111/1541-0420.00018.
Several recently completed and ongoing studies of the natural history of HIV infection have generated a wealth of information about its clinical progression and how this progression is altered by therepeutic interventions and environmental factors. Natural history studies typically follow prospective cohort designs, and enroll large numbers of participants for long-term prospective follow-up (up to several years). Using data from the HIV Epidemiology Research Study (HERS), a six-year natural history study that enrolled 871 HIV-infected women starting in 1993, we investigate the therapeutic effect of highly active antiretroviral therapy regimens (HAART) on CD4 cell count using the marginal structural modeling framework and associated estimation procedures based on inverse-probability weighting (developed by Robins and colleagues). To evaluate treatment effects from a natural history study, specialized methods are needed because treatments are not randomly prescribed and, in particular, the treatment-response relationship can be confounded by variables that are time-varying. Our analysis uses CD4 data on all follow-up visits over a two-year period, and includes sensitivity analyses to investigate potential biases attributable to unmeasured confounding. Strategies for selecting ranges of a sensitivity parameter are given, as are intervals for treatment effect that reflect uncertainty attributable both to sampling and to lack of knowledge about the nature and existence of unmeasured confounding. To our knowledge, this is the first use in "real data" of Robins's sensitivity analysis for unmeasured confounding (Robins, 1999a, Synthese 121, 151-179). The findings from our analysis are consistent with recent treatment guidelines set by the U.S. Panel of the International AIDS Society (Carpenter et al., 2000, Journal of the American Medical Association 280, 381-391).
最近完成的几项关于HIV感染自然史的研究以及正在进行的相关研究,已经产生了大量有关其临床进展以及这种进展如何因治疗干预和环境因素而改变的信息。自然史研究通常采用前瞻性队列设计,并招募大量参与者进行长期前瞻性随访(长达数年)。利用来自HIV流行病学研究(HERS)的数据,这是一项为期六年的自然史研究,从1993年开始招募了871名感染HIV的女性,我们使用边际结构建模框架以及基于逆概率加权的相关估计程序(由罗宾斯及其同事开发),研究高效抗逆转录病毒治疗方案(HAART)对CD4细胞计数的治疗效果。为了评估自然史研究中的治疗效果,需要专门的方法,因为治疗并非随机分配,特别是治疗反应关系可能会受到随时间变化的变量的混淆。我们的分析使用了两年期间所有随访就诊的CD4数据,并包括敏感性分析,以调查未测量的混杂因素可能导致的潜在偏差。给出了选择敏感性参数范围的策略,以及反映因抽样和对未测量混杂因素的性质及存在缺乏了解而导致的不确定性的治疗效果区间。据我们所知,这是罗宾斯针对未测量混杂因素的敏感性分析首次用于“实际数据”(罗宾斯,1999a,《综合》121,151 - 179)。我们分析的结果与美国国际艾滋病协会小组制定的最新治疗指南一致(卡彭特等人,2000,《美国医学会杂志》280,381 - 391)。