Suppr超能文献

用于估计时变效应修正的历史调整边际结构模型。

History-adjusted marginal structural models for estimating time-varying effect modification.

作者信息

Petersen Maya L, Deeks Steven G, Martin Jeffrey N, van der Laan Mark J

机构信息

Division of Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA.

出版信息

Am J Epidemiol. 2007 Nov 1;166(9):985-93. doi: 10.1093/aje/kwm232. Epub 2007 Sep 17.

Abstract

Much of epidemiology and clinical medicine is focused on estimating the effects of treatments or interventions administered over time. In such settings of longitudinal treatment, time-dependent confounding is often an important source of bias. Marginal structural models (MSMs) are a powerful tool for estimating the causal effect of a treatment using observational data, particularly when time-dependent confounding is present. In recent statistical work, van der Laan et al. presented a generalized form of MSMs called "history-adjusted" MSMs (Int J Biostat 2005;1:article 4). Unlike standard MSMs, history-adjusted MSMs can be used to estimate modification of treatment effects by time-varying covariates. Estimation of time-dependent causal effect modification is frequently of great practical relevance. For example, clinical researchers are often interested in how the prognostic significance of a biomarker for treatment response can change over time. This article provides a practical introduction to the implementation and interpretation of history-adjusted MSMs. The method is illustrated using a clinical question drawn from the treatment of human immunodeficiency virus infection. Observational cohort data from San Francisco, California, collected between 2000 and 2004, are used to estimate the effect of time until switching antiretroviral therapy regimens among patients receiving a non suppressive regimen and how this effect differs depending on CD4-positive T-lymphocyte count.

摘要

流行病学和临床医学的很多内容都聚焦于评估随时间推移给予的治疗或干预措施的效果。在这种纵向治疗的情况下,时间依存性混杂因素常常是偏差的一个重要来源。边际结构模型(MSMs)是利用观察性数据估计治疗因果效应的有力工具,尤其是在存在时间依存性混杂因素时。在最近的统计学研究中,范德·拉恩等人提出了一种广义形式的MSMs,称为“历史调整”MSMs(《国际生物统计学杂志》2005年;1:第4篇文章)。与标准MSMs不同,历史调整MSMs可用于估计随时间变化的协变量对治疗效果的修正。估计时间依存性因果效应修正常常具有重大的实际意义。例如,临床研究人员常常对生物标志物对治疗反应的预后意义如何随时间变化感兴趣。本文对历史调整MSMs的实施和解释进行了实际介绍。该方法通过一个来自人类免疫缺陷病毒感染治疗的临床问题进行说明。使用加利福尼亚州旧金山在2000年至2004年期间收集的观察性队列数据,来估计接受非抑制性治疗方案的患者在转换抗逆转录病毒治疗方案之前的时间效应,以及这种效应如何因CD4阳性T淋巴细胞计数而异。

相似文献

2
Effect modification by time-varying covariates.随时间变化的协变量对效应的修正
Am J Epidemiol. 2007 Nov 1;166(9):994-1002; discussion 1003-4. doi: 10.1093/aje/kwm231. Epub 2007 Sep 17.
6
Marginal Structural Models: unbiased estimation for longitudinal studies.边缘结构模型:纵向研究的无偏估计。
Int J Public Health. 2011 Feb;56(1):117-9. doi: 10.1007/s00038-010-0198-4. Epub 2010 Oct 8.
7
Marginal Structural Models with Counterfactual Effect Modifiers.具有反事实效应修饰因子的边际结构模型。
Int J Biostat. 2018 Jun 8;14(1):/j/ijb.2018.14.issue-1/ijb-2018-0039/ijb-2018-0039.xml. doi: 10.1515/ijb-2018-0039.

引用本文的文献

3
Air pollution and serious bleeding events in high-risk older adults.空气污染与高危老年人严重出血事件。
Environ Res. 2024 Jun 15;251(Pt 1):118628. doi: 10.1016/j.envres.2024.118628. Epub 2024 Mar 7.
6
Assessing Heterogeneity of Treatment Effect in Real-World Data.评估真实世界数据中治疗效果的异质性。
Ann Intern Med. 2023 Apr;176(4):536-544. doi: 10.7326/M22-1510. Epub 2023 Mar 21.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验