Suppr超能文献

红细胞膜的本构关系。修正。

Constitutive relation for red cell membrane. Correction.

作者信息

Evans E A

出版信息

Biophys J. 1976 Jun;16(6):597-600. doi: 10.1016/S0006-3495(76)85714-1.

Abstract

The intention of this note is to correct a subtle and somewhat esoteric error that the author discovered in his previous publications on membrane elastic behavior. The consitutive relation between membrane force resultants and large, elastic deformations of a membrane surface involves a strain tensor, characterizing the finite deformations. The original strain tensor that appeared in the equations was the Lagrangian strain tensor; however, the proper strain representation (also Lagrangian in nature because it is "measured" relative to the undeformed material state) is transformed by rotations of coordinates in the deformed material state (whereas the Lagrangian strain tensor is transformed by rotations of coordinates in the undeformed state). The principal membrane tensions are unchanged by this correction; the material elastic constants remain the same; and therefore, the material behavior in shear and isotropic tension is the same. However, the tensor, constitutive relation can be properly applied to coordinate systems other than the principal axis system.

摘要

本注释的目的是纠正作者在先前关于膜弹性行为的出版物中发现的一个细微且有些深奥的错误。膜面内力与膜面大弹性变形之间的本构关系涉及一个应变张量,用于表征有限变形。方程中最初出现的应变张量是拉格朗日应变张量;然而,正确的应变表示(本质上也是拉格朗日的,因为它是相对于未变形材料状态“测量”的)在变形材料状态下会因坐标旋转而变换(而拉格朗日应变张量在未变形状态下因坐标旋转而变换)。这种修正不会改变主膜张力;材料弹性常数保持不变;因此,材料在剪切和各向同性拉伸时的行为是相同的。然而,张量本构关系可以适用于主轴系统以外的坐标系。

相似文献

1
Constitutive relation for red cell membrane. Correction.
Biophys J. 1976 Jun;16(6):597-600. doi: 10.1016/S0006-3495(76)85714-1.
2
Elastic area compressibility modulus of red cell membrane.
Biophys J. 1976 Jun;16(6):585-95. doi: 10.1016/S0006-3495(76)85713-X.
3
Theory of the sphering of red blood cells.
Biophys J. 1968 Feb;8(2):175-98. doi: 10.1016/S0006-3495(68)86484-7.
4
A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes.
Biomech Model Mechanobiol. 2011 Jul;10(4):445-59. doi: 10.1007/s10237-010-0246-2. Epub 2010 Aug 20.
5
New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells.
Biophys J. 1973 Sep;13(9):941-54. doi: 10.1016/S0006-3495(73)86036-9.
6
Extensional flow of erythrocyte membrane from cell body to elastic tether. I. Analysis.
Biophys J. 1982 Jul;39(1):71-81. doi: 10.1016/S0006-3495(82)84492-5.
7
Membrane viscoelasticity.
Biophys J. 1976 Jan;16(1):1-11. doi: 10.1016/S0006-3495(76)85658-5.
8
Red cell extensional recovery and the determination of membrane viscosity.
Biophys J. 1979 Apr;26(1):101-14. doi: 10.1016/S0006-3495(79)85238-8.
9
Membrane viscoplastic flow.
Biophys J. 1976 Jan;16(1):13-26. doi: 10.1016/S0006-3495(76)85659-7.
10
Stress-strain analysis and the lung.
Fed Proc. 1982 Jan;41(1):130-5.

引用本文的文献

1
Mechanical transduction by ion channels: A cautionary tale.
World J Neurol. 2015 Sep 28;5(3):74-87. doi: 10.5316/wjn.v5.i3.74.

本文引用的文献

1
A new material concept for the red cell membrane.
Biophys J. 1973 Sep;13(9):926-40. doi: 10.1016/S0006-3495(73)86035-7.
2
Elastic area compressibility modulus of red cell membrane.
Biophys J. 1976 Jun;16(6):585-95. doi: 10.1016/S0006-3495(76)85713-X.
3
Membrane viscoelasticity.
Biophys J. 1976 Jan;16(1):1-11. doi: 10.1016/S0006-3495(76)85658-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验