Wenzel Andreas, Grimm Christian, Samardzija Marijana, Remé Charlotte E
Laboratory for Retinal Cell Biology, Eye Clinic, University Hospital Zurich, Zurich, Switzerland.
Invest Ophthalmol Vis Sci. 2003 Jun;44(6):2798-802. doi: 10.1167/iovs.02-1134.
To test whether introduction of the Rpe65Leu(450) variant can overcome protection against light-induced photoreceptor apoptosis in mice without the activator protein (AP)-1 constituent c-Fos.
c-Fos-deficient mice (c-fos(-/-)) carrying the Leu(450) variant of RPE65 were compared with c-fos(-/-) mice with Rpe65Met(450). Expression of RPE65 was analyzed by Western blot analysis. Rhodopsin regeneration was determined by measuring rhodopsin after different times in darkness after bleaching. Susceptibility to light-induced damage was tested by exposure to white light and subsequent morphologic analysis. Activation of AP-1 and its complex composition was analyzed by electromobility shift assay (EMSA) and antibody interference. The contribution of AP-1 to apoptosis was tested by pharmacological inhibition of AP-1, using dexamethasone.
Compared with RPE65Met(450), introduction of the RPE65Leu(450) variant led to increased levels of RPE65 protein, accelerated rhodopsin regeneration, loss of protection against light-induced damage, and AP-1 responsiveness to toxic light doses, despite the absence of c-Fos. c-Fos was mainly replaced by Fra-2. Application of dexamethasone restored resistance to light-induced damage.
Increasing retinal photon catch capacity by introducing the Rpe65Leu(450) variant overcomes light damage resistance provided by c-fos deficiency. Thus, a variation of RPE65 at position 450 is a strong genetic modifier of susceptibility to light-induced damage in mice. Under conditions of high rhodopsin availability during exposure to light, Fra-2 and, to a minor degree, FosB substitute for c-Fos and enable light-induced AP-1 activity and thus photoreceptor apoptosis. Regardless of the AP-1 complex's composition, glucocorticoid receptor activation inhibits AP-1 and prevents apoptosis. Thus, not the absence of c-Fos per se, but rather impairment of AP-1 DNA binding is protective against light-induced damage. This impairment may result from the absence of c-Fos or glucocorticoid receptor-mediated transrepression.
测试引入Rpe65Leu(450)变体是否能克服在没有激活蛋白(AP)-1成分c-Fos的小鼠中对光诱导的光感受器细胞凋亡的保护作用。
将携带RPE65的Leu(450)变体的c-Fos缺陷小鼠(c-fos(-/-))与具有Rpe65Met(450)的c-fos(-/-)小鼠进行比较。通过蛋白质印迹分析来分析RPE65的表达。通过在漂白后的黑暗中不同时间测量视紫红质来确定视紫红质的再生情况。通过暴露于白光并随后进行形态学分析来测试对光诱导损伤的易感性。通过电泳迁移率变动分析(EMSA)和抗体干扰来分析AP-1的激活及其复合物组成。使用地塞米松通过对AP-1的药理学抑制来测试AP-1对细胞凋亡的作用。
与RPE65Met(450)相比,引入RPE65Leu(450)变体导致RPE65蛋白水平升高、视紫红质再生加速、对光诱导损伤的保护作用丧失以及AP-1对有毒光剂量的反应性,尽管不存在c-Fos。c-Fos主要被Fra-2取代。应用地塞米松恢复了对光诱导损伤的抗性。
通过引入Rpe65Leu(450)变体增加视网膜光子捕获能力可克服c-fos缺陷所提供的抗光损伤能力。因此,RPE65第450位的变异是小鼠对光诱导损伤易感性的强遗传修饰因子。在光照期间视紫红质可用性高的条件下,Fra-2以及在较小程度上FosB替代c-Fos并使光诱导的AP-1活性得以实现,从而导致光感受器细胞凋亡。无论AP-1复合物的组成如何,糖皮质激素受体激活均抑制AP-1并防止细胞凋亡。因此,对光诱导损伤具有保护作用的不是c-Fos本身的缺失,而是AP-1与DNA结合的受损。这种受损可能是由于c-Fos的缺失或糖皮质激素受体介导的反式抑制作用。