Suppr超能文献

HERG钾通道跨膜结构域中的负电荷参与激活和失活门控过程。

Negative charges in the transmembrane domains of the HERG K channel are involved in the activation- and deactivation-gating processes.

作者信息

Liu Jie, Zhang Mei, Jiang Min, Tseng Gea-Ny

机构信息

Department of Physiology, Virginia Commonwealth University, Richmond 23298, USA.

出版信息

J Gen Physiol. 2003 Jun;121(6):599-614. doi: 10.1085/jgp.200308788.

Abstract

The transmembrane domains of HERG (S1-S3) contain six negative charges: three are conserved in all voltage-gated K channels (D456 and D466 in S2, D501 in S3) and three are unique to the EAG family (D411 in S1, D460 in S2, and D509 in S3). We infer the functional role of these aspartates by studying how substituting them with cysteine, one at a time, affects the channel function. D456C is not functional, suggesting that this negative charge may play a critical role in channel protein folding during biogenesis, as has been shown for its counterpart in the Shaker channel. Data from the other five functional mutants suggest that D411 can stabilize the HERG channel in the closed state, while D460 and D509 have the opposite effect. D466 and D501 both may contribute to voltage-sensing during the activation process. On the other hand, all five aspartates work in a concerted fashion in contributing to the slow deactivation process of the HERG channel. Accessibility tests of the introduced thiol groups to extracellular MTS reagents indicate that water-filled crevices penetrate deep into the HERG protein core, reaching the cytoplasmic halves of S1 and S2. At these deep locations, accessibility of 411C and 466C to the extracellular aqueous phase is voltage dependent, suggesting that conformational changes occur in S1 and S2 or the surrounding crevices during gating. Increasing extracellular [H+] accelerates HERG deactivation. This effect is suppressed by substituting the aspartates with cysteine, suggesting that protonation of these aspartates may contribute to the signaling pathway whereby external [H+] influences conformational changes in the channel's cytoplasmic domains (where deactivation takes place). There is no evidence for a metal ion binding site coordinated by negative charges in the transmembrane domains of HERG, as the one described for the EAG channel.

摘要

HERG(S1 - S3)的跨膜结构域含有六个负电荷:其中三个在所有电压门控钾通道中是保守的(S2中的D456和D466,S3中的D501),另外三个是EAG家族特有的(S1中的D411,S2中的D460,以及S3中的D509)。我们通过研究将它们逐个替换为半胱氨酸如何影响通道功能来推断这些天冬氨酸的功能作用。D456C无功能,这表明该负电荷可能在生物合成过程中对通道蛋白折叠起关键作用,就像在Shaker通道中的对应电荷所显示的那样。其他五个功能突变体的数据表明,D411可使HERG通道稳定在关闭状态,而D460和D509则有相反作用。D466和D501在激活过程中可能都对电压传感有贡献。另一方面,所有五个天冬氨酸协同作用,促成HERG通道的缓慢失活过程。对引入的硫醇基团与细胞外MTS试剂的可及性测试表明,充满水的裂隙深入HERG蛋白核心,到达S1和S2的胞质半段。在这些深处位置,411C和466C对细胞外水相的可及性是电压依赖性的,这表明在门控过程中S1和S2或其周围裂隙发生了构象变化。增加细胞外[H⁺]会加速HERG失活。用半胱氨酸替换天冬氨酸可抑制这种效应,这表明这些天冬氨酸的质子化可能有助于外部[H⁺]影响通道胞质结构域(失活发生的部位)构象变化的信号传导途径。没有证据表明HERG跨膜结构域中存在由负电荷配位的金属离子结合位点,就像EAG通道中所描述的那样。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d97a/2217355/b5a33bc6027a/200308788f1.jpg

相似文献

4
Gating charges in the activation and inactivation processes of the HERG channel.
J Gen Physiol. 2004 Dec;124(6):703-18. doi: 10.1085/jgp.200409119. Epub 2004 Nov 15.
6
Molecular basis of slow activation of the human ether-a-go-go related gene potassium channel.
J Physiol. 2004 Jul 15;558(Pt 2):417-31. doi: 10.1113/jphysiol.2004.062588. Epub 2004 Jun 4.
7
Dynamic control of deactivation gating by a soluble amino-terminal domain in HERG K(+) channels.
J Gen Physiol. 2000 Jun;115(6):749-58. doi: 10.1085/jgp.115.6.749.
8
Structure-function studies of the outer mouth and voltage sensor domain of hERG.
Novartis Found Symp. 2005;266:19-35; discussion 35-45.
9
Molecular mapping of a site for Cd2+-induced modification of human ether-à-go-go-related gene (hERG) channel activation.
J Physiol. 2005 Sep 15;567(Pt 3):737-55. doi: 10.1113/jphysiol.2005.089094. Epub 2005 Jun 23.

引用本文的文献

1
An Insight into the Potassium Currents of hERG and Their Simulation.
Molecules. 2023 Apr 16;28(8):3514. doi: 10.3390/molecules28083514.
2
The voltage-sensing domain of a hERG1 mutant is a cation-selective channel.
Biophys J. 2022 Dec 6;121(23):4585-4599. doi: 10.1016/j.bpj.2022.10.032. Epub 2022 Oct 29.
3
Refinement of a cryo-EM structure of hERG: Bridging structure and function.
Biophys J. 2021 Feb 16;120(4):738-748. doi: 10.1016/j.bpj.2021.01.011. Epub 2021 Jan 19.
4
A novel mutation in KCNH2 yields loss-of-function of hERG potassium channel in long QT syndrome 2.
Pflugers Arch. 2021 Feb;473(2):219-229. doi: 10.1007/s00424-021-02518-1. Epub 2021 Jan 15.
5
The EAG Voltage-Dependent K Channel Subfamily: Similarities and Differences in Structural Organization and Gating.
Front Pharmacol. 2020 Apr 15;11:411. doi: 10.3389/fphar.2020.00411. eCollection 2020.
6
Modulation of hERG K Channel Deactivation by Voltage Sensor Relaxation.
Front Pharmacol. 2020 Feb 28;11:139. doi: 10.3389/fphar.2020.00139. eCollection 2020.
7
Roles for Countercharge in the Voltage Sensor Domain of Ion Channels.
Front Pharmacol. 2020 Feb 28;11:160. doi: 10.3389/fphar.2020.00160. eCollection 2020.
8
Extracellular protons accelerate hERG channel deactivation by destabilizing voltage sensor relaxation.
J Gen Physiol. 2019 Feb 4;151(2):231-246. doi: 10.1085/jgp.201812137. Epub 2018 Dec 7.
9
The Fast Component of hERG Gating Charge: An Interaction between D411 in the S1 and S4 Residues.
Biophys J. 2017 Nov 7;113(9):1979-1991. doi: 10.1016/j.bpj.2017.09.004.
10
The S1 helix critically regulates the finely tuned gating of Kv11.1 channels.
J Biol Chem. 2017 May 5;292(18):7688-7705. doi: 10.1074/jbc.M117.779298. Epub 2017 Mar 9.

本文引用的文献

1
Potassium ion current in the squid giant axon: dynamic characteristic.
Biophys J. 1960 Sep;1(1):1-14. doi: 10.1016/s0006-3495(60)86871-3.
2
Rapid induction of P/C-type inactivation is the mechanism for acid-induced K+ current inhibition.
J Gen Physiol. 2003 Mar;121(3):215-25. doi: 10.1085/jgp.20028760.
3
Structural and functional role of the extracellular s5-p linker in the HERG potassium channel.
J Gen Physiol. 2002 Nov;120(5):723-37. doi: 10.1085/jgp.20028687.
4
Coupling between voltage sensors and activation gate in voltage-gated K+ channels.
J Gen Physiol. 2002 Nov;120(5):663-76. doi: 10.1085/jgp.20028696.
6
Molecular models of voltage sensing.
J Gen Physiol. 2002 Oct;120(4):455-63. doi: 10.1085/jgp.20028678.
7
Structural organization of the voltage sensor in voltage-dependent potassium channels.
Novartis Found Symp. 2002;245:178-90; discussion 190-2, 261-4.
8
Fast and slow voltage sensor movements in HERG potassium channels.
J Gen Physiol. 2002 Mar;119(3):275-93. doi: 10.1085/jgp.20028534.
9
Interactions between S4-S5 linker and S6 transmembrane domain modulate gating of HERG K+ channels.
J Biol Chem. 2002 May 24;277(21):18994-9000. doi: 10.1074/jbc.M200410200. Epub 2002 Feb 25.
10
A novel extracellular calcium sensing mechanism in voltage-gated potassium ion channels.
J Neurosci. 2001 Jun 15;21(12):4143-53. doi: 10.1523/JNEUROSCI.21-12-04143.2001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验