Hittner James B, May Kim, Silver N Clayton
Department of Psychology, College of Charleston, SC 29424, USA.
J Gen Psychol. 2003 Apr;130(2):149-68. doi: 10.1080/00221300309601282.
The authors conducted a Monte Carlo simulation of 8 statistical tests for comparing dependent zero-order correlations. In particular, they evaluated the Type I error rates and power of a number of test statistics for sample sizes (Ns) of 20, 50, 100, and 300 under 3 different population distributions (normal, uniform, and exponential). For the Type I error rate analyses, the authors evaluated 3 different magnitudes of the predictor-criterion correlations (rho(y,x1) = rho(y,x2) = .1, .4, and .7). For the power analyses, they examined 3 different effect sizes or magnitudes of discrepancy between rho(y,x1) and rho(y,x2) (values of .1, .3, and .6). They conducted all of the simulations at 3 different levels of predictor intercorrelation (rho(x1,x2) = .1, .3, and .6). The results indicated that both Type I error rate and power depend not only on sample size and population distribution, but also on (a) the predictor intercorrelation and (b) the effect size (for power) or the magnitude of the predictor-criterion correlations (for Type I error rate). When the authors considered Type I error rate and power simultaneously, the findings suggested that O. J. Dunn and V. A. Clark's (1969) z and E. J. Williams's (1959) t have the best overall statistical properties. The findings extend and refine previous simulation research and as such, should have greater utility for applied researchers.
作者对8种用于比较相关零阶相关性的统计检验进行了蒙特卡罗模拟。具体而言,他们评估了在3种不同总体分布(正态、均匀和指数分布)下,样本量(Ns)分别为20、50、100和300时,多种检验统计量的I类错误率和检验功效。对于I类错误率分析,作者评估了预测变量与标准变量相关性的3种不同量级(rho(y,x1) = rho(y,x2) = .1、.4和.7)。对于检验功效分析,他们考察了rho(y,x1)与rho(y,x2)之间3种不同的效应大小或差异量级(.1、.3和.6)。他们在预测变量相互关联的3种不同水平(rho(x1,x2) = .1、.3和.6)下进行了所有模拟。结果表明,I类错误率和检验功效不仅取决于样本量和总体分布,还取决于(a)预测变量的相互关联以及(b)效应大小(对于检验功效)或预测变量与标准变量相关性的量级(对于I类错误率)。当作者同时考虑I类错误率和检验功效时,研究结果表明O. J. 邓恩和V. A. 克拉克(1969年)的z检验以及E. J. 威廉姆斯(1959年)的t检验具有最佳的总体统计特性。这些发现扩展并完善了先前的模拟研究,因此,对应用研究人员应具有更大的实用价值。