Suppr超能文献

定向量子点纳米线的病毒组装

Viral assembly of oriented quantum dot nanowires.

作者信息

Mao Chuanbin, Flynn Christine E, Hayhurst Andrew, Sweeney Rozamond, Qi Jifa, Georgiou George, Iverson Brent, Belcher Angela M

机构信息

Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, Center for Nano- and Molecular Science and Technology, and Texas Materials Institute, University of Texas, Austin, TX 78712, USA.

出版信息

Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):6946-51. doi: 10.1073/pnas.0832310100. Epub 2003 May 30.

Abstract

The highly organized structure of M13 bacteriophage was used as an evolved biological template for the nucleation and orientation of semiconductor nanowires. To create this organized template, peptides were selected by using a pIII phage display library for their ability to nucleate ZnS or CdS nanocrystals. The successful peptides were expressed as pVIII fusion proteins into the crystalline capsid of the virus. The engineered viruses were exposed to semiconductor precursor solutions, and the resultant nanocrystals that were templated along the viruses to form nanowires were extensively characterized by using high-resolution analytical electron microscopy and photoluminescence. ZnS nanocrystals were well crystallized on the viral capsid in a hexagonal wurtzite or a cubic zinc blende structure, depending on the peptide expressed on the viral capsid. Electron diffraction patterns showed single-crystal type behavior from a polynanocrystalline area of the nanowire formed, suggesting that the nanocrystals on the virus were preferentially oriented with their [001] perpendicular to the viral surface. Peptides that specifically directed CdS nanocrystal growth were also engineered into the viral capsid to create wurtzite CdS virus-based nanowires. Lastly, heterostructured nucleation was achieved with a dual-peptide virus engineered to express two distinct peptides within the same viral capsid. This work represents a genetically controlled biological synthesis route to a semiconductor nanoscale heterostructure.

摘要

M13噬菌体高度有序的结构被用作半导体纳米线成核和取向的进化生物模板。为了创建这种有序模板,通过使用pIII噬菌体展示文库,根据肽使ZnS或CdS纳米晶体成核的能力来选择肽。成功的肽被表达为pVIII融合蛋白,进入病毒的结晶衣壳。将工程病毒暴露于半导体前驱体溶液中,利用高分辨率分析电子显微镜和光致发光对沿病毒模板化形成纳米线的所得纳米晶体进行了广泛表征。根据病毒衣壳上表达的肽,ZnS纳米晶体在病毒衣壳上以六方纤锌矿或立方闪锌矿结构良好结晶。电子衍射图谱显示,形成的纳米线的多纳米晶体区域呈现单晶型行为,这表明病毒上的纳米晶体优先以其[001]垂直于病毒表面的方向取向。还将特异性指导CdS纳米晶体生长的肽工程化到病毒衣壳中,以创建基于纤锌矿CdS病毒的纳米线。最后,通过在同一病毒衣壳内表达两种不同肽的双肽病毒实现了异质结构成核。这项工作代表了一种基因控制的生物合成路线,用于制备半导体纳米级异质结构。

相似文献

1
Viral assembly of oriented quantum dot nanowires.
Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):6946-51. doi: 10.1073/pnas.0832310100. Epub 2003 May 30.
2
Ordering of quantum dots using genetically engineered viruses.
Science. 2002 May 3;296(5569):892-5. doi: 10.1126/science.1068054.
3
Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires.
Science. 2004 Jan 9;303(5655):213-7. doi: 10.1126/science.1092740.
7
Growth of semiconducting nanocrystals of CdS and ZnS.
J Nanosci Nanotechnol. 2007 Jun;7(6):1726-9. doi: 10.1166/jnn.2007.706.
8
Hybrid approach to the synthesis of highly luminescent CdTe/ZnS and CdHgTe/ZnS nanocrystals.
J Am Chem Soc. 2004 Feb 25;126(7):1926-7. doi: 10.1021/ja039227v.
9
Programmable assembly of nanoarchitectures using genetically engineered viruses.
Nano Lett. 2005 Jul;5(7):1429-34. doi: 10.1021/nl050795d.
10
Bacterial biosynthesis of cadmium sulfide nanocrystals.
Chem Biol. 2004 Nov;11(11):1553-9. doi: 10.1016/j.chembiol.2004.08.022.

引用本文的文献

1
Proteins Template the Formation of Semiconductor Quantum Dots.
ACS Cent Sci. 2025 May 27;11(6):983-993. doi: 10.1021/acscentsci.4c01826. eCollection 2025 Jun 25.
2
Understanding Biomineralization Mechanisms to Produce Size-Controlled, Tailored Nanocrystals for Optoelectronic and Catalytic Applications: A Review.
ACS Appl Nano Mater. 2024 Feb 29;7(16):18626-18654. doi: 10.1021/acsanm.3c04277. eCollection 2024 Aug 23.
3
Utilizing a divalent metal ion transporter to control biogenic nanoparticle synthesis.
J Ind Microbiol Biotechnol. 2023 Feb 17;50(1). doi: 10.1093/jimb/kuad020.
4
Biosynthesis of inorganic nanomaterials using microbial cells and bacteriophages.
Nat Rev Chem. 2020 Dec;4(12):638-656. doi: 10.1038/s41570-020-00221-w. Epub 2020 Oct 5.
6
A review on the biosynthesis of metal and metal salt nanoparticles by microbes.
RSC Adv. 2019 Apr 26;9(23):12944-12967. doi: 10.1039/c8ra10483b. eCollection 2019 Apr 25.
9
The viral capsid as novel nanomaterials for drug delivery.
Future Sci OA. 2021 Jul 14;7(9):FSO744. doi: 10.2144/fsoa-2021-0031. eCollection 2021 Oct.
10
Green Synthesis of Nanomaterials.
Nanomaterials (Basel). 2021 Aug 21;11(8):2130. doi: 10.3390/nano11082130.

本文引用的文献

1
Bending and fracture of compact circumferential and osteonal lamellar bone of the baboon tibia.
J Mater Sci Mater Med. 2000 Jan;11(1):49-60. doi: 10.1023/a:1008989719560.
2
Ordering of quantum dots using genetically engineered viruses.
Science. 2002 May 3;296(5569):892-5. doi: 10.1126/science.1068054.
3
Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si.
Nature. 2002 Apr 25;416(6883):826-9. doi: 10.1038/416826a.
4
Growth of nanowire superlattice structures for nanoscale photonics and electronics.
Nature. 2002 Feb 7;415(6872):617-20. doi: 10.1038/415617a.
5
Self-assembly and mineralization of peptide-amphiphile nanofibers.
Science. 2001 Nov 23;294(5547):1684-8. doi: 10.1126/science.1063187.
6
Highly polarized photoluminescence and photodetection from single indium phosphide nanowires.
Science. 2001 Aug 24;293(5534):1455-7. doi: 10.1126/science.1062340.
7
Calcitic microlenses as part of the photoreceptor system in brittlestars.
Nature. 2001 Aug 23;412(6849):819-22. doi: 10.1038/35090573.
9
Homodimeric peptides displayed by the major coat protein of filamentous phage.
J Mol Biol. 2000 Jul 7;300(2):307-20. doi: 10.1006/jmbi.2000.3850.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验