Suppr超能文献

一种用于解释窦房结搏动节律的最小单通道模型。

A minimal single-channel model for the regularity of beating in the sinoatrial node.

作者信息

Guevara Michael R., Lewis Timothy J.

机构信息

Department of Physiology and Centre for Nonlinear Dynamics in Physiology and Medicine, McGill University, Montreal H3G 1Y6, Canada.

出版信息

Chaos. 1995 Mar;5(1):174-183. doi: 10.1063/1.166065.

Abstract

It has been suggested that the normal irregular beating of the heart is a manifestation of deterministically chaotic dynamics. Evidence proffered in support of this hypothesis includes a 1/f-like power spectrum, a small noninteger correlation dimension, and self-similarity of the time series. The major cause of the normal fluctuations in heart rate is the impingement of several neural and hormonal control systems upon the sinoatrial node, the natural pacemaker of the heart. However, intrinsic fluctuations of beat rate can be seen in the isolated node, devoid of all neural and hormonal inputs, and even in a single cell isolated from the node. The electrical activity in such a single cell is generated by ions flowing through discrete channels in the cell membrane.We decided to test the hypothesis that the fluctuations in beat rate in a single cell might be due to the fluctuations in the activity of this population of single channels. We thus assemble a model consisting of 6000 channels and probe its dynamics. Each channel has one or more gates, all of which must be open to allow current to flow through the channel. Since these gates are thought to open and close in a random manner, we model each gate by a Markov process, assigning a pseudorandom number to each gate every time that it changes state from open to closed or vice versa. This number, in conjunction with the classical voltage-dependent Hodgkin-Huxley-like rate constants that control the speed with which a gate will open or close, then determines when that gate will next change state. We also employ a second method that is much more efficient computationally, in which one computes the lifetime of the ensemble of 6000 channels. We show that the Monte Carlo model has behavior consistent with the hypothesis that the irregular beating seen experimentally in single nodal cells is due to the (pseudo)random opening and closing of single channels. However, since the pseudorandom number generator used in the simulations is deterministic, one cannot state that the activity in the model is random (or stochastic). Thus, it would be premature to claim that the irregularity of beating in a single nodal cell is accounted for by the stochastic behavior of a population of a few thousand single channels lying in the membrane of the cell. Finally, we consider some implications of our work for the naturally occurring in situ fluctuations in heart rate ("heart rate variability"). (c) 1995 American Institute of Physics.

摘要

有人提出,心脏正常的不规则跳动是确定性混沌动力学的一种表现。支持这一假设的证据包括类似1/f的功率谱、小的非整数关联维数以及时间序列的自相似性。心率正常波动的主要原因是几种神经和激素控制系统对心脏的自然起搏器——窦房结的影响。然而,在没有所有神经和激素输入的孤立节点中,甚至在从节点分离出的单个细胞中,都可以看到心跳速率的内在波动。这种单个细胞中的电活动是由离子流过细胞膜中的离散通道产生的。我们决定检验这样一个假设,即单个细胞中心跳速率的波动可能是由于这群单通道活动的波动所致。因此,我们构建了一个由6000个通道组成的模型,并探究其动力学。每个通道有一个或多个门,所有门都必须打开才能使电流流过通道。由于这些门被认为是以随机方式打开和关闭的,我们用马尔可夫过程对每个门进行建模,每次门从打开状态变为关闭状态或反之亦然时,为每个门分配一个伪随机数。这个数字,结合控制门打开或关闭速度的经典电压依赖性霍奇金-赫胥黎类速率常数,然后确定该门下次何时改变状态。我们还采用了第二种计算效率更高的方法,即计算6000个通道集合的寿命。我们表明,蒙特卡罗模型的行为与以下假设一致:在实验中观察到的单个节点细胞中的不规则跳动是由于单通道的(伪)随机打开和关闭所致。然而,由于模拟中使用的伪随机数生成器是确定性的,所以不能说模型中的活动是随机的(或随机的)。因此,声称单个节点细胞中跳动的不规则性是由位于细胞膜中的几千个单通道群体的随机行为所解释,还为时过早。最后,我们考虑了我们的工作对心率自然发生的原位波动(“心率变异性”)的一些影响。(c)1995美国物理研究所。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验