Suppr超能文献

生物噪声是心脏起搏和 EC 偶联的可重复性和适应性的关键决定因素。

Biological noise is a key determinant of the reproducibility and adaptability of cardiac pacemaking and EC coupling.

机构信息

Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA.

Department of Pharmacology, University of California Davis School of Medicine, Davis, CA.

出版信息

J Gen Physiol. 2022 Sep 5;154(9). doi: 10.1085/jgp.202012613. Epub 2022 Apr 28.

Abstract

Each heartbeat begins with the generation of an action potential in pacemaking cells in the sinoatrial node. This signal triggers contraction of cardiac muscle through a process termed excitation-contraction (EC) coupling. EC coupling is initiated in dyadic structures of cardiac myocytes, where ryanodine receptors in the junctional sarcoplasmic reticulum come into close apposition with clusters of CaV1.2 channels in invaginations of the sarcolemma. Cooperative activation of CaV1.2 channels within these clusters causes a local increase in intracellular Ca2+ that activates the juxtaposed ryanodine receptors. A salient feature of healthy cardiac function is the reliable and precise beat-to-beat pacemaking and amplitude of Ca2+ transients during EC coupling. In this review, we discuss recent discoveries suggesting that the exquisite reproducibility of this system emerges, paradoxically, from high variability at subcellular, cellular, and network levels. This variability is attributable to stochastic fluctuations in ion channel trafficking, clustering, and gating, as well as dyadic structure, which increase intracellular Ca2+ variance during EC coupling. Although the effects of these large, local fluctuations in function and organization are sometimes negligible at the macroscopic level owing to spatial-temporal summation within and across cells in the tissue, recent work suggests that the "noisiness" of these intracellular Ca2+ events may either enhance or counterintuitively reduce variability in a context-dependent manner. Indeed, these noisy events may represent distinct regulatory features in the tuning of cardiac contractility. Collectively, these observations support the importance of incorporating experimentally determined values of Ca2+ variance in all EC coupling models. The high reproducibility of cardiac contraction is a paradoxical outcome of high Ca2+ signaling variability at subcellular, cellular, and network levels caused by stochastic fluctuations in multiple processes in time and space. This underlying stochasticity, which counterintuitively manifests as reliable, consistent Ca2+ transients during EC coupling, also allows for rapid changes in cardiac rhythmicity and contractility in health and disease.

摘要

每个心跳都始于窦房结起搏细胞中动作电位的产生。这个信号通过兴奋-收缩(EC)偶联过程触发心肌收缩。EC 偶联始于心肌细胞的二联体结构中,其中连接的肌质网中的兰尼碱受体与肌膜凹陷中的 CaV1.2 通道簇紧密相邻。这些簇中的 CaV1.2 通道的协同激活导致细胞内 Ca2+局部增加,从而激活相邻的兰尼碱受体。健康心脏功能的一个显著特征是 EC 偶联期间可靠和精确的心跳起搏和 Ca2+瞬变幅度。在这篇综述中,我们讨论了最近的发现,表明该系统的高度重现性出人意料地来自亚细胞、细胞和网络水平的高度变异性。这种变异性归因于离子通道运输、簇集和门控的随机波动,以及二联体结构,这会增加 EC 偶联期间细胞内 Ca2+的方差。尽管由于组织内和细胞间的时空总和,这些功能和组织中的大局部波动在宏观水平上的影响有时可以忽略不计,但最近的工作表明,这些细胞内 Ca2+事件的“噪声”可能以上下文依赖的方式增强或反直觉地降低变异性。事实上,这些嘈杂的事件可能代表了心脏收缩性调节的独特特征。总的来说,这些观察结果支持在所有 EC 偶联模型中纳入实验确定的 Ca2+方差值的重要性。心脏收缩的高重现性是亚细胞、细胞和网络水平 Ca2+信号变异性高的矛盾结果,这种变异性是由多个过程在时间和空间中的随机波动引起的。这种潜在的随机性在 EC 偶联期间反直觉地表现为可靠、一致的 Ca2+瞬变,也允许在健康和疾病状态下快速改变心脏节律性和收缩性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ba6/9059386/f889c9b61ecc/JGP_202012613_Fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验