Buckwar Evelyn, Riedler Martin G
Department of Mathematics, Maxwell Institute, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom.
J Math Biol. 2011 Dec;63(6):1051-93. doi: 10.1007/s00285-010-0395-z. Epub 2011 Jan 18.
In this paper, we present a mathematical description for excitable biological membranes, in particular neuronal membranes. We aim to model the (spatio-) temporal dynamics, e.g., the travelling of an action potential along the axon, subject to noise, such as ion channel noise. Using the framework of Piecewise Deterministic Processes (PDPs) we provide an exact mathematical description-in contrast to pseudo-exact algorithms considered in the literature-of the stochastic process one obtains coupling a continuous time Markov chain model with a deterministic dynamic model of a macroscopic variable, that is coupling Markovian channel dynamics to the time-evolution of the transmembrane potential. We extend the existing framework of PDPs in finite dimensional state space to include infinite-dimensional evolution equations and thus obtain a stochastic hybrid model suitable for modelling spatio-temporal dynamics. We derive analytic results for the infinite-dimensional process, such as existence, the strong Markov property and its extended generator. Further, we exemplify modelling of spatially extended excitable membranes with PDPs by a stochastic hybrid version of the Hodgkin-Huxley model of the squid giant axon. Finally, we discuss the advantages of the PDP formulation in view of analytical and numerical investigations as well as the application of PDPs to structurally more complex models of excitable membranes.
在本文中,我们给出了可兴奋生物膜,特别是神经元膜的数学描述。我们旨在对(时空)动力学进行建模,例如动作电位沿轴突的传播,并考虑诸如离子通道噪声等噪声因素。使用分段确定性过程(PDPs)框架,我们提供了一个精确的数学描述——与文献中考虑的伪精确算法不同——关于通过将连续时间马尔可夫链模型与宏观变量的确定性动力学模型耦合而得到的随机过程,即把马尔可夫通道动力学与跨膜电位的时间演化耦合起来。我们将有限维状态空间中现有的PDPs框架扩展到包含无穷维演化方程,从而得到一个适用于对时空动力学进行建模的随机混合模型。我们推导了无穷维过程的解析结果,如存在性、强马尔可夫性质及其扩展生成元。此外,我们通过乌贼巨大轴突的霍奇金 - 赫胥黎模型的随机混合版本,举例说明了用PDPs对空间扩展可兴奋膜进行建模。最后,我们从分析和数值研究的角度讨论了PDP公式的优势,以及PDPs在结构更复杂的可兴奋膜模型中的应用。