Suppr超能文献

脑电活动中非线性结构的指征

Indications of nonlinear structures in brain electrical activity.

作者信息

Gautama Temujin, Mandic Danilo P, Van Hulle Marc M

机构信息

Laboratorium voor Neuro- en Psychofysiologie, K U Leuven, Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Apr;67(4 Pt 2):046204. doi: 10.1103/PhysRevE.67.046204. Epub 2003 Apr 10.

Abstract

The dynamical properties of electroencephalogram (EEG) segments have recently been analyzed by Andrzejak and co-workers for different recording regions and for different brain states, using the nonlinear prediction error and an estimate of the correlation dimension. In this paper, we further investigate the nonlinear properties of the EEG signals using two established nonlinear analysis methods, and introduce a "delay vector variance" (DVV) method for better characterizing a time series. The proposed DVV method is shown to enable a comprehensive characterization of the time series, allowing for a much improved classification of signal modes. This way, the analysis of Andrzejak and co-workers can be extended toward classification of different brain states. The obtained results comply with those described by Andrzejak et al., and provide complementary indications of nonlinearity in the signals.

摘要

最近,安杰亚克及其同事使用非线性预测误差和关联维数估计,对不同记录区域和不同脑状态下的脑电图(EEG)片段的动力学特性进行了分析。在本文中,我们使用两种既定的非线性分析方法进一步研究EEG信号的非线性特性,并引入一种“延迟向量方差”(DVV)方法以更好地表征时间序列。结果表明,所提出的DVV方法能够全面地表征时间序列,从而显著改善信号模式的分类。通过这种方式,安杰亚克及其同事的分析可以扩展到不同脑状态的分类。所得结果与安杰亚克等人描述的结果一致,并提供了信号非线性的补充指标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验