Gautama Temujin, Mandic Danilo P, Van Hulle Marc M
Laboratorium voor Neuro- en Psychofysiologie, K U Leuven, Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Apr;67(4 Pt 2):046204. doi: 10.1103/PhysRevE.67.046204. Epub 2003 Apr 10.
The dynamical properties of electroencephalogram (EEG) segments have recently been analyzed by Andrzejak and co-workers for different recording regions and for different brain states, using the nonlinear prediction error and an estimate of the correlation dimension. In this paper, we further investigate the nonlinear properties of the EEG signals using two established nonlinear analysis methods, and introduce a "delay vector variance" (DVV) method for better characterizing a time series. The proposed DVV method is shown to enable a comprehensive characterization of the time series, allowing for a much improved classification of signal modes. This way, the analysis of Andrzejak and co-workers can be extended toward classification of different brain states. The obtained results comply with those described by Andrzejak et al., and provide complementary indications of nonlinearity in the signals.
最近,安杰亚克及其同事使用非线性预测误差和关联维数估计,对不同记录区域和不同脑状态下的脑电图(EEG)片段的动力学特性进行了分析。在本文中,我们使用两种既定的非线性分析方法进一步研究EEG信号的非线性特性,并引入一种“延迟向量方差”(DVV)方法以更好地表征时间序列。结果表明,所提出的DVV方法能够全面地表征时间序列,从而显著改善信号模式的分类。通过这种方式,安杰亚克及其同事的分析可以扩展到不同脑状态的分类。所得结果与安杰亚克等人描述的结果一致,并提供了信号非线性的补充指标。