Suppr超能文献

基于随机神经网络的利用脑电图信号的癫痫发作检测。

Random Neural Network Based Epileptic Seizure Episode Detection Exploiting Electroencephalogram Signals.

机构信息

School of Computing, Engineering and Built Environment, Glasgow Caledonian University, Glasgow G4 0BA, UK.

SMART Technology Research Centre, Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, UK.

出版信息

Sensors (Basel). 2022 Mar 23;22(7):2466. doi: 10.3390/s22072466.

Abstract

Epileptic seizures are caused by abnormal electrical activity in the brain that manifests itself in a variety of ways, including confusion and loss of awareness. Correct identification of epileptic seizures is critical in the treatment and management of patients with epileptic disorders. One in four patients present resistance against seizures episodes and are in dire need of detecting these critical events through continuous treatment in order to manage the specific disease. Epileptic seizures can be identified by reliably and accurately monitoring the patients' neuro and muscle activities, cardiac activity, and oxygen saturation level using state-of-the-art sensing techniques including electroencephalograms (EEGs), electromyography (EMG), electrocardiograms (ECGs), and motion or audio/video recording that focuses on the human head and body. EEG analysis provides a prominent solution to distinguish between the signals associated with epileptic episodes and normal signals; therefore, this work aims to leverage on the latest EEG dataset using cutting-edge deep learning algorithms such as random neural network (RNN), convolutional neural network (CNN), extremely random tree (ERT), and residual neural network (ResNet) to classify multiple variants of epileptic seizures from non-seizures. The results obtained highlighted that RNN outperformed all other algorithms used and provided an overall accuracy of 97%, which was slightly improved after cross validation.

摘要

癫痫发作是由大脑中的异常电活动引起的,其表现形式多种多样,包括意识混乱和丧失。正确识别癫痫发作对于癫痫患者的治疗和管理至关重要。四分之一的患者对癫痫发作有抵抗力,迫切需要通过持续治疗来检测这些关键事件,以管理特定疾病。可以通过使用最先进的传感技术,包括脑电图 (EEG)、肌电图 (EMG)、心电图 (ECG) 以及专注于人头和身体的运动或音频/视频记录,可靠且准确地监测患者的神经和肌肉活动、心脏活动和氧饱和度水平,来识别癫痫发作。脑电图分析提供了一种突出的解决方案,可以区分与癫痫发作相关的信号和正常信号;因此,这项工作旨在利用最新的脑电图数据集,使用最先进的深度学习算法,如随机神经网络 (RNN)、卷积神经网络 (CNN)、极端随机树 (ERT) 和残差神经网络 (ResNet),从非癫痫发作中分类多种类型的癫痫发作。所得结果表明,RNN 优于使用的所有其他算法,并提供了 97%的整体准确率,在交叉验证后略有提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ac6/9002775/6d824216901a/sensors-22-02466-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验