Suppr超能文献

在具有突触权重长尾分布的脉冲神经网络中,通过多重分形分析检测到的自发活动的确定性特征。

Deterministic characteristics of spontaneous activity detected by multi-fractal analysis in a spiking neural network with long-tailed distributions of synaptic weights.

作者信息

Nobukawa Sou, Wagatsuma Nobuhiko, Nishimura Haruhiko

机构信息

Department of Computer Science, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016 Japan.

Faculty of Science, Department of Information Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510 Japan.

出版信息

Cogn Neurodyn. 2020 Dec;14(6):829-836. doi: 10.1007/s11571-020-09605-6. Epub 2020 Jun 24.

Abstract

Cortical neural networks maintain autonomous electrical activity called spontaneous activity that represents the brain's dynamic internal state even in the absence of sensory stimuli. The spatio-temporal complexity of spontaneous activity is strongly related to perceptual, learning, and cognitive brain functions; multi-fractal analysis can be utilized to evaluate the complexity of spontaneous activity. Recent studies have shown that the deterministic dynamic behavior of spontaneous activity especially reflects the topological neural network characteristics and changes of neural network structures. However, it remains unclear whether multi-fractal analysis, recently widely utilized for neural activity, is effective for detecting the complexity of the deterministic dynamic process. To verify this point, we focused on the log-normal distribution of excitatory postsynaptic potentials (EPSPs) to evaluate the multi-fractality of spontaneous activity in a spiking neural network with a log-normal distribution of EPSPs. We found that the spiking activities exhibited multi-fractal characteristics. Moreover, to investigate the presence of a deterministic process in the spiking activity, we conducted a surrogate data analysis against the time-series of spiking activity. The results showed that the spontaneous spiking activity included the deterministic dynamic behavior. Overall, the combination of multi-fractal analysis and surrogate data analysis can detect deterministic complex neural activity. The multi-fractal analysis of neural activity used in this study could be widely utilized for brain modeling and evaluation methods for signals obtained by neuroimaging modalities.

摘要

皮层神经网络维持着一种称为自发活动的自主电活动,即使在没有感觉刺激的情况下,这种活动也代表着大脑的动态内部状态。自发活动的时空复杂性与感知、学习和认知脑功能密切相关;多重分形分析可用于评估自发活动的复杂性。最近的研究表明,自发活动的确定性动态行为尤其反映了拓扑神经网络特征和神经网络结构的变化。然而,最近广泛用于神经活动的多重分形分析是否能有效检测确定性动态过程的复杂性仍不清楚。为了验证这一点,我们聚焦于兴奋性突触后电位(EPSP)的对数正态分布,以评估具有EPSP对数正态分布的脉冲神经网络中自发活动的多重分形性。我们发现脉冲活动表现出多重分形特征。此外,为了研究脉冲活动中确定性过程的存在,我们对脉冲活动的时间序列进行了替代数据分析。结果表明,自发脉冲活动包含确定性动态行为。总体而言,多重分形分析和替代数据分析相结合可以检测确定性复杂神经活动。本研究中使用的神经活动多重分形分析可广泛应用于脑建模以及神经成像模态获得的信号评估方法。

相似文献

3
Long-Tailed Characteristic of Spiking Pattern Alternation Induced by Log-Normal Excitatory Synaptic Distribution.
IEEE Trans Neural Netw Learn Syst. 2021 Aug;32(8):3525-3537. doi: 10.1109/TNNLS.2020.3015208. Epub 2021 Aug 3.
5
Fractal spike dynamics and neuronal coupling in the primate visual system.
J Physiol. 2020 Apr;598(8):1551-1571. doi: 10.1113/JP278935. Epub 2020 Feb 23.
7
Where's the Noise? Key Features of Spontaneous Activity and Neural Variability Arise through Learning in a Deterministic Network.
PLoS Comput Biol. 2015 Dec 29;11(12):e1004640. doi: 10.1371/journal.pcbi.1004640. eCollection 2015 Dec.
8
NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data.
Neural Netw. 2014 Apr;52:62-76. doi: 10.1016/j.neunet.2014.01.006. Epub 2014 Jan 20.
10
Synaptic dynamics: linear model and adaptation algorithm.
Neural Netw. 2014 Aug;56:49-68. doi: 10.1016/j.neunet.2014.04.001. Epub 2014 Apr 28.

引用本文的文献

1
Stability analysis of fractional order memristor synapse-coupled hopfield neural network with ring structure.
Cogn Neurodyn. 2023 Aug;17(4):1045-1059. doi: 10.1007/s11571-022-09844-9. Epub 2022 Aug 27.
2
Complex spiking neural networks with synaptic time-delay based on anti-interference function.
Cogn Neurodyn. 2022 Dec;16(6):1485-1503. doi: 10.1007/s11571-022-09803-4. Epub 2022 Apr 15.

本文引用的文献

1
Machine classification of spatiotemporal patterns: automated parameter search in a rebounding spiking network.
Cogn Neurodyn. 2020 Jun;14(3):267-280. doi: 10.1007/s11571-020-09568-8. Epub 2020 Jan 14.
2
Classification Methods Based on Complexity and Synchronization of Electroencephalography Signals in Alzheimer's Disease.
Front Psychiatry. 2020 Apr 7;11:255. doi: 10.3389/fpsyt.2020.00255. eCollection 2020.
4
Atypical temporal-scale-specific fractal changes in Alzheimer's disease EEG and their relevance to cognitive decline.
Cogn Neurodyn. 2019 Feb;13(1):1-11. doi: 10.1007/s11571-018-9509-x. Epub 2018 Oct 8.
5
Changes in functional connectivity dynamics with aging: A dynamical phase synchronization approach.
Neuroimage. 2019 Mar;188:357-368. doi: 10.1016/j.neuroimage.2018.12.008. Epub 2018 Dec 7.
6
Self-similarity and multifractality in human brain activity: A wavelet-based analysis of scale-free brain dynamics.
J Neurosci Methods. 2018 Nov 1;309:175-187. doi: 10.1016/j.jneumeth.2018.09.010. Epub 2018 Sep 10.
7
Developmental Trajectory of Infant Brain Signal Variability: A Longitudinal Pilot Study.
Front Neurosci. 2018 Aug 14;12:566. doi: 10.3389/fnins.2018.00566. eCollection 2018.
8
First-Spike-Based Visual Categorization Using Reward-Modulated STDP.
IEEE Trans Neural Netw Learn Syst. 2018 Dec;29(12):6178-6190. doi: 10.1109/TNNLS.2018.2826721. Epub 2018 May 8.
9
Representation learning using event-based STDP.
Neural Netw. 2018 Sep;105:294-303. doi: 10.1016/j.neunet.2018.05.018. Epub 2018 Jun 1.
10
Spatio-Temporal Backpropagation for Training High-Performance Spiking Neural Networks.
Front Neurosci. 2018 May 23;12:331. doi: 10.3389/fnins.2018.00331. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验