Schlax Paula Jean, Worhunsky David J
Department of Chemistry, Program in Biological Chemistry, Bates College, 5 Andrews Road, Lewiston, Maine 04240, USA.
Mol Microbiol. 2003 Jun;48(5):1157-69. doi: 10.1046/j.1365-2958.2003.03517.x.
Translational repression results from a complex choreography of macromolecular interactions interfering with the formation of translational initiation complexes. The relationship between the rate and extent of formation of these interactions to form repressed mRNA complexes determines the extent of repression. A novel analysis of repression mechanisms is presented here and it indicates that the reversibility of repressed complex formation influences the steady state balance of the distribution of translationally active and inactive complexes and therefore has an impact on the efficiency of repression. Reviewed here is evidence for three distinct translational repression mechanisms, regulating expression of the transcription factor sigma32, threonine tRNA synthetase and ribosomal proteins on the alpha operon in Escherichia coli. Efficient regulation of expression in these systems makes use of specific mRNA structures in quite different ways.
翻译抑制源于干扰翻译起始复合物形成的大分子相互作用的复杂编排。这些相互作用形成被抑制的mRNA复合物的速率和程度之间的关系决定了抑制的程度。本文提出了一种对抑制机制的新分析,表明被抑制复合物形成的可逆性影响翻译活性和非活性复合物分布的稳态平衡,因此对抑制效率有影响。本文综述了三种不同的翻译抑制机制的证据,这些机制调节大肠杆菌α操纵子上转录因子sigma32、苏氨酸tRNA合成酶和核糖体蛋白的表达。在这些系统中,对表达的有效调节以相当不同的方式利用了特定的mRNA结构。