Morita M T, Tanaka Y, Kodama T S, Kyogoku Y, Yanagi H, Yura T
HSP Research Institute, Kyoto Research Park, Kyoto 600-8813, Japan.
Genes Dev. 1999 Mar 15;13(6):655-65. doi: 10.1101/gad.13.6.655.
Induction of heat shock proteins in Escherichia coli is primarily caused by increased cellular levels of the heat shock sigma-factor sigma32 encoded by the rpoH gene. Increased sigma32 levels result from both enhanced synthesis and stabilization. Previous work indicated that sigma32 synthesis is induced at the translational level and is mediated by the mRNA secondary structure formed within the 5'-coding sequence of rpoH, including the translation initiation region. To understand the mechanism of heat induction of sigma32 synthesis further, we analyzed expression of rpoH-lacZ gene fusions with altered stability of mRNA structure before and after heat shock. A clear correlation was found between the stability and expression or the extent of heat induction. Temperature-melting profiles of mRNAs with or without mutations correlated well with the expression patterns of fusion genes carrying the corresponding mutations in vivo. Furthermore, temperature dependence of mRNA-30S ribosome-tRNAfMet complex formation with wild-type or mutant mRNAs in vitro agreed well with that of the expression of gene fusions in vivo. Our results support a novel mechanism in which partial melting of mRNA secondary structure at high temperature enhances ribosome entry and translational initiation without involvement of other cellular components, that is, intrinsic mRNA stability controls synthesis of a transcriptional regulator.
大肠杆菌中热休克蛋白的诱导主要是由rpoH基因编码的热休克σ因子σ32的细胞水平增加引起的。σ32水平的增加源于合成增强和稳定性提高。先前的研究表明,σ32的合成在翻译水平上被诱导,并且由rpoH的5'编码序列(包括翻译起始区域)内形成的mRNA二级结构介导。为了进一步了解热诱导σ32合成的机制,我们分析了热休克前后mRNA结构稳定性改变的rpoH-lacZ基因融合体的表达。发现稳定性与表达或热诱导程度之间存在明显的相关性。有或无突变的mRNA的温度解链曲线与体内携带相应突变的融合基因的表达模式密切相关。此外,体外野生型或突变型mRNA与mRNA-30S核糖体-tRNAfMet复合物形成的温度依赖性与体内基因融合体的表达情况非常吻合。我们的结果支持一种新机制,即高温下mRNA二级结构的部分解链增强了核糖体进入和翻译起始,而无需其他细胞成分的参与,也就是说,内在的mRNA稳定性控制转录调节因子的合成。