Schenk Gerhard, Neidig Michael L, Zhou Jing, Holman Theodore R, Solomon Edward I
Department of Chemistry, Stanford University, California 94305-5080, USA.
Biochemistry. 2003 Jun 24;42(24):7294-302. doi: 10.1021/bi027380g.
Lipoxygenases are non-heme iron enzymes, which catalyze the stereo- and regiospecific hydroperoxidation of unsaturated fatty acids. Spectroscopic studies on soybean lipoxygenase have shown that the ferrous form of the enzyme is a mixture of five- and six-coordinate species (40 and 60%, respectively). Addition of substrate leads to a purely six-coordinate form. A series of mutations in the second coordination sphere (Q697E, Q697N, Q495A, and Q495E) were generated, and the structures of the mutants were solved by crystallography [Tomchick et al. (2001) Biochemistry 40, 7509-7517]. While this study clearly showed the contribution of H-bond interactions between the first and the second coordination spheres in catalysis, no correlation with the coordination environment of the Fe(II) was observed. A recent study using density-functional theory [Lehnert and Solomon (2002) J. Biol. Inorg. Chem. 8, 294-305] indicated that coordination flexibility, involving the Asn694 ligand, is regulated via H-bond interactions. In this paper, we investigate the solution structures of the second coordination sphere mutants using CD and MCD spectroscopy since these techniques are more sensitive indicators of the first coordination sphere ligation of Fe(II) systems. Our data demonstrate that the iron coordination environment directly relates to activity, with the mutations that have the ability to form a five-coordinate/six-coordinate mixture being more active. We propose that the H-bond between the weak Asn694 ligand and the Gln697 plays a key role in the modulation of the coordination flexibility of Asn694, and thus, is crucial for the regulation of enzyme reactivity.
脂氧合酶是一类非血红素铁酶,可催化不饱和脂肪酸的立体和区域特异性氢过氧化反应。对大豆脂氧合酶的光谱研究表明,该酶的亚铁形式是五配位和六配位物种的混合物(分别为40%和60%)。底物的加入会导致形成纯六配位形式。在第二配位层产生了一系列突变(Q697E、Q697N、Q495A和Q495E),并通过晶体学解析了突变体的结构[Tomchick等人(2001年)《生物化学》40卷,7509 - 7517页]。虽然这项研究清楚地表明了第一和第二配位层之间的氢键相互作用在催化中的作用,但未观察到与Fe(II)配位环境的相关性。最近一项使用密度泛函理论的研究[Lehnert和Solomon(2002年)《生物无机化学杂志》8卷,294 - 305页]表明,涉及Asn694配体的配位灵活性是通过氢键相互作用来调节的。在本文中,我们使用圆二色光谱(CD)和磁圆二色光谱(MCD)研究第二配位层突变体的溶液结构,因为这些技术是Fe(II)体系第一配位层配位情况更敏感的指标。我们的数据表明,铁的配位环境与活性直接相关,能够形成五配位/六配位混合物的突变体活性更高。我们提出,弱Asn694配体与Gln697之间的氢键在调节Asn694的配位灵活性中起关键作用,因此对酶反应性的调节至关重要。