Yu Tao, Soudackov Alexander V, Hammes-Schiffer Sharon
Department of Chemistry, 600 South Mathews Avenue, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.
J Phys Chem Lett. 2016 Sep 1;7(17):3429-33. doi: 10.1021/acs.jpclett.6b01626. Epub 2016 Aug 19.
Soybean lipoxygenase (SLO) serves as a prototype for fundamental understanding of hydrogen tunneling in enzymes. Its reactivity depends on the active site structure around a mononuclear, nonheme iron center. The available crystal structures indicate five-coordinate iron, while magnetic circular dichroism experiments suggest significant populations of both five-coordinate (5C) and six-coordinate (6C) iron in ferrous SLO. Quantum mechanical calculations of gas phase models produce only 6C geometries. Herein mixed quantum mechanical/molecular mechanical (QM/MM) calculations are employed to identify and characterize the 5C and 6C geometries. These calculations highlight the importance of the protein environment, particularly two Gln residues in a hydrogen-bonding network with Asn694, the ligand that can dissociate. This hydrogen-bonding network is similar in both geometries, but twisting of a dihedral angle in Asn694 moves its oxygen away from the iron in the 5C geometry. These insights are important for future simulations of SLO.
大豆脂氧合酶(SLO)是从根本上理解酶中氢隧穿现象的一个典范。其反应活性取决于单核非血红素铁中心周围的活性位点结构。现有的晶体结构显示为五配位铁,而磁圆二色性实验表明,亚铁SLO中同时存在大量的五配位(5C)和六配位(6C)铁。气相模型的量子力学计算仅产生六配位几何结构。在此,采用混合量子力学/分子力学(QM/MM)计算来识别和表征五配位和六配位几何结构。这些计算突出了蛋白质环境的重要性,特别是在与可解离配体Asn694形成氢键网络中的两个Gln残基。这种氢键网络在两种几何结构中相似,但Asn694中二面角的扭转使其氧原子在五配位几何结构中远离铁原子。这些见解对SLO未来的模拟很重要。