Suppr超能文献

一种单参数神经激活到肌肉激活模型:从肌电图估计等长关节力矩。

A one-parameter neural activation to muscle activation model: estimating isometric joint moments from electromyograms.

作者信息

Manal Kurt, Buchanan Thomas S

机构信息

Center for Biomedical Engineering Research, University of Delaware, 126 Spencer Laboratories, Newark, DE 19716, USA.

出版信息

J Biomech. 2003 Aug;36(8):1197-202. doi: 10.1016/s0021-9290(03)00152-0.

Abstract

Nonlinearities have been observed in the isometric EMG-force relationship. However, these are generally not included when using EMG-driven Hill-type muscle models that account for muscle activation dynamics. In this paper, we present a formulation for a one-parameter transformation model (i.e., A-model) that accounts for the type of physiological nonlinearities observed at low levels of force. The general shape for the curvilinear portion of the curve was based on phenomenological data reported by Woods and Bigland-Ritchie. The one-parameter A-model is easy to implement, and when used with an EMG-driven Hill-type model, was shown to provide a better fit of the measured joint moment. Optimization methods were used to determine the appropriate curvature of the relationship for each muscle, and thus introduced a degree of "tuning" to each subject.

摘要

在等长肌电图-力关系中已观察到非线性。然而,在使用考虑肌肉激活动力学的肌电图驱动的希尔型肌肉模型时,这些非线性通常未被纳入。在本文中,我们提出了一种单参数变换模型(即A模型)的公式,该模型考虑了在低力水平下观察到的生理非线性类型。曲线的曲线部分的一般形状基于伍兹和比格兰-里奇报告的现象学数据。单参数A模型易于实现,并且当与肌电图驱动的希尔型模型一起使用时,被证明能更好地拟合测量到的关节力矩。使用优化方法来确定每块肌肉关系的适当曲率,从而为每个受试者引入了一定程度的“调整”。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验