Suppr超能文献

用于越野坐式滑雪双杖滑行中上肢肌肉激活预测的协同辅助肌电图驱动的神经肌肉骨骼模型评估

Assessment of synergy-assisted EMG-driven NMSK model for upper limb muscle activation prediction in cross-country sit-skiing double poling.

作者信息

Chen Xue, Yuan Zhongxue, Gao Xianzhi, Zhang Yanxin, Liu Chenglin, Huo Bo

机构信息

School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China.

Department of Exercise Sciences, The University of Auckland, Auckland, New Zealand.

出版信息

Front Bioeng Biotechnol. 2025 Aug 18;13:1585127. doi: 10.3389/fbioe.2025.1585127. eCollection 2025.

Abstract

INTRODUCTION

Cross-country sit-skiers are often individuals with spinal cord injuries, cerebral palsy, or lower limb disabilities, relying heavily on upper limb strength to generate propulsion during skiing. However, frequent shoulder joint movements significantly increase the incidence of shoulder joint disorders. Therefore, quantifying muscle forces during movement is crucial for understanding upper limb force generation patterns. Currently, electromyography (EMG)-driven neuromusculoskeletal (NMSK) models are the predominant method for calculating muscle forces and joint moments. However, this approach heavily depends on the quality and quantity of EMG data. Surface electrodes are typically used to collect activity data from superficial muscles, but during dynamic movements, factors such as skin stretching, sweating, or friction may cause electrode detachment or poor contact, leading to EMG signal acquisition failures or data loss. In this study, we propose a synergy-assisted EMG-driven NMSK model to predict the activation patterns of missing muscles for cross-country sit-skiing double poling.

METHODS

This method is based on individualized EMG-driven NMSK models constructed for each participant, incorporating data from 10 muscles. By utilizing the activation data of 9 known muscles, the model predicts the activation of one missing muscle through synergy analysis. For synergy method selection, we systematically compared four approaches: Non-negative Matrix Factorization (NMF), Principal Component Analysis (PCA), Independent Component Analysis (ICA), and Factor Analysis (FA).

RESULTS

The results demonstrated NMF's superior performance at 5 synergies, accurately predicting any missing muscle activation among 10 muscles ( = 0.79 ± 0.25 vs. 0.14 ± 0.60-0.45 ± 0.63 for alternatives, < 0.05), with lower errors (RMSE: 0.21 ± 0.11, < 0.05 vs. ICA/FA, < 0.1 vs. PCA; MAE: 0.17 ± 0.09, all < 0.05).

CONCLUSION

This finding validates the effectiveness of the proposed method in predicting upper limb muscle activation during coupled shoulder and elbow joint movements.

摘要

引言

越野坐式滑雪者通常是患有脊髓损伤、脑瘫或下肢残疾的人,在滑雪过程中严重依赖上肢力量来产生推进力。然而,频繁的肩关节运动显著增加了肩关节疾病的发生率。因此,量化运动过程中的肌肉力量对于理解上肢力量产生模式至关重要。目前,肌电图(EMG)驱动的神经肌肉骨骼(NMSK)模型是计算肌肉力量和关节力矩的主要方法。然而,这种方法严重依赖于EMG数据的质量和数量。表面电极通常用于从浅层肌肉收集活动数据,但在动态运动过程中,皮肤拉伸、出汗或摩擦等因素可能导致电极脱落或接触不良,从而导致EMG信号采集失败或数据丢失。在本研究中,我们提出了一种协同辅助的EMG驱动的NMSK模型,用于预测越野坐式滑雪双杖划动中缺失肌肉的激活模式。

方法

该方法基于为每个参与者构建的个性化EMG驱动的NMSK模型,纳入了来自10块肌肉的数据。通过利用9块已知肌肉的激活数据,该模型通过协同分析预测一块缺失肌肉的激活。对于协同方法的选择,我们系统地比较了四种方法:非负矩阵分解(NMF)、主成分分析(PCA)、独立成分分析(ICA)和因子分析(FA)。

结果

结果表明,在5种协同作用下,NMF具有卓越的性能,能够准确预测10块肌肉中任何一块缺失肌肉的激活(与其他方法相比, = 0.79 ± 0.25,而其他方法为0.14 ± 0.60 - 0.45 ± 0.63, < 0.05),误差更低(均方根误差:0.21 ± 0.11,与ICA/FA相比 < 0.05,与PCA相比 < 0.1;平均绝对误差:0.17 ± 0.09,均 < 0.05)。

结论

这一发现验证了所提出方法在预测肩部和肘部关节联合运动期间上肢肌肉激活方面的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验