Asanuma Masato, Miyazaki Ikuko, Ogawa Norio
Department of Brain Science, Okayama University Graduate School of Medicine and Dentistry, Okayama 700-8558, Japan.
Neurotox Res. 2003;5(3):165-76. doi: 10.1007/BF03033137.
Dopamine (DA)- or L-dihydroxyphenylalanine-(L-DOPA-) induced neurotoxicity is thought to be involved not only in adverse reactions induced by long-term L-DOPA therapy but also in the pathogenesis of Parkinson's disease. Numerous in vitro and in vivo studies concerning DA- or L-DOPA-induced neurotoxicity have been reported in recent decades. The reactive oxygen or nitrogen species generated in the enzymatical oxidation or auto-oxidation of an excess amount of DA induce neuronal damage and/or apoptotic or non-apoptotic cell death; the DA-induced damage is prevented by various intrinsic and extrinsic antioxidants. DA and its metabolites containing two hydroxyl residues exert cytotoxicity in dopaminergic neuronal cells mainly due to the generation of highly reactive DA and DOPA quinones which are dopaminergic neuron-specific cytotoxic molecules. DA and DOPA quinones may irreversibly alter protein function through the formation of 5-cysteinyl-catechols on the proteins. For example, the formation of DA quinone-alpha-synuclein consequently increases cytotoxic protofibrils and the covalent modification of tyrosine hydroxylase by DA quinones. The melanin-synthetic enzyme tyrosinase in the brain may rapidly oxidize excess amounts of cytosolic DA and L-DOPA, thereby preventing slowly progressive cell damage by auto-oxidation of DA, thus maintainng DA levels. Since tyrosinase also possesses catecholamine-synthesizing activity in the absence of tyrosine hydroxylase (TH), the double-edged synthesizing and oxidizing functions of tyrosinase in the dopaminergic system suggest its potential for application in the synthesis of DA, instead of TH in the degeneration of dopaminergic neurons, and in the normalization of abnormal DA turnover in the long-term L-DOPA-treated Parkinson's disease patients.
多巴胺(DA)或左旋二羟基苯丙氨酸(L-DOPA)诱导的神经毒性被认为不仅与长期L-DOPA治疗引起的不良反应有关,还与帕金森病的发病机制有关。近几十年来,已经报道了许多关于DA或L-DOPA诱导神经毒性的体外和体内研究。过量DA在酶促氧化或自氧化过程中产生的活性氧或氮物种会诱导神经元损伤和/或凋亡或非凋亡性细胞死亡;各种内在和外在的抗氧化剂可预防DA诱导的损伤。含有两个羟基残基的DA及其代谢产物在多巴胺能神经元细胞中发挥细胞毒性作用,主要是由于产生了高反应性的DA和多巴醌,它们是多巴胺能神经元特异性的细胞毒性分子。DA和多巴醌可能通过在蛋白质上形成5-半胱氨酰儿茶酚而不可逆地改变蛋白质功能。例如,DA醌-α-突触核蛋白的形成会增加细胞毒性原纤维,以及DA醌对酪氨酸羟化酶的共价修饰。大脑中的黑色素合成酶酪氨酸酶可能会迅速氧化过量的胞质DA和L-DOPA,从而通过DA的自氧化防止缓慢进行性的细胞损伤,从而维持DA水平。由于酪氨酸酶在缺乏酪氨酸羟化酶(TH)的情况下也具有儿茶酚胺合成活性,因此酪氨酸酶在多巴胺能系统中的双重合成和氧化功能表明其在DA合成中的应用潜力,可替代多巴胺能神经元变性中的TH,并使长期接受L-DOPA治疗的帕金森病患者异常的DA周转正常化。