Ai Hua, Jones Steven A, Lvov Yuri M
Department of Biomedical Engineering and Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA 71272, USA.
Cell Biochem Biophys. 2003;39(1):23-43. doi: 10.1385/CBB:39:1:23.
The introduction of electrostatic layer-by-layer (LbL) self-assembly has shown broad biomedical applications in thin film coating, micropatterning, nanobioreactors, artificial cells, and drug delivery systems. Multiple assembly polyelectrolytes and proteins are based on electrostatic interaction between oppositely charged layers. The film architecture is precisely designed and can be controlled to 1-nm precision with a range from 5 to 1000 nm. Thin films can be deposited on any surface including many widely used biomaterials. Microencapsulation of micro/nanotemplates with multilayers enabled cell surface modification, controlled drug release, hollow shell formation, and nanobioreactors. Both in vitro and in vivo studies indicate potential applications in biology, pharmaceutics, medicine, and other biomedical areas.
静电逐层(LbL)自组装技术的引入已在薄膜涂层、微图案化、纳米生物反应器、人工细胞和药物递送系统等方面展现出广泛的生物医学应用。多种组装聚电解质和蛋白质基于带相反电荷层之间的静电相互作用。薄膜结构经过精确设计,可控制在1纳米精度,范围为5至1000纳米。薄膜可沉积在任何表面,包括许多广泛使用的生物材料。用多层对微/纳米模板进行微囊化可实现细胞表面修饰、可控药物释放、中空壳形成和纳米生物反应器。体外和体内研究均表明其在生物学、制药学、医学和其他生物医学领域的潜在应用。