Kaushal Dhruv, Contos James J A, Treuner Kai, Yang Amy H, Kingsbury Marcy A, Rehen Stevens K, McConnell Michael J, Okabe Masaru, Barlow Carrolee, Chun Jerold
Neuroscience Program, Department of Pharmacology, University of California, San Diego, San Diego, California 92093, USA.
J Neurosci. 2003 Jul 2;23(13):5599-606. doi: 10.1523/JNEUROSCI.23-13-05599.2003.
Frequent chromosomal aneuploidy has recently been discovered in normal neurons of the developing and mature murine CNS. Toward a more detailed understanding of aneuploidy and its effects on normal CNS cells, we examined the genomes of cells in the postnatal subventricular zone (SVZ), an area that harbors a large number of neural stem and progenitor cells (NPCs), which give rise to neurons and glia. Here we show that NPCs, neurons, and glia from the SVZ are frequently aneuploid. Karyotyping revealed that approximately 33% of mitotic SVZ cells lost or gained chromosomes in vivo, whereas interphase fluorescence in situ hybridization demonstrated aneuploidy in postnatal-born cells in the olfactory bulb (OB) in vivo, along with neurons, glia, and NPCs in vitro. One possible consequence of aneuploidy is altered gene expression through loss of heterozygosity (LOH). This was examined in a model of LOH: loss of transgene expression in mice hemizygous for a ubiquitously expressed enhanced green fluorescent protein (eGFP) transgene on chromosome 15. Concurrent examination of eGFP expression, transgene abundance, and chromosome 15 copy number demonstrated that a preponderance of living SVZ and OB cells not expressing eGFP lost one copy of chromosome 15; the eGFP transgene was lost in these cells as well. Although gene expression profiling revealed changes in expression levels of several genes relative to GFP-expressing controls, cells with LOH at chromosome 15 were morphologically normal and proliferated or underwent apoptosis at rates similar to those of euploid cells in vitro. These findings support the view that NPCs and postnatal-born neurons and glia can be aneuploid in vivo and functional gene expression can be permanently altered in living neural cells by chromosomal aneuploidy.
最近在发育中和成熟的小鼠中枢神经系统(CNS)的正常神经元中发现了频繁的染色体非整倍性。为了更详细地了解非整倍性及其对正常CNS细胞的影响,我们检测了出生后脑室下区(SVZ)细胞的基因组,该区域含有大量神经干细胞和祖细胞(NPCs),它们可产生神经元和神经胶质细胞。在这里,我们表明来自SVZ的NPCs、神经元和神经胶质细胞经常是非整倍体。核型分析显示,体内约33%的有丝分裂SVZ细胞丢失或获得了染色体,而间期荧光原位杂交显示,体内嗅球(OB)中出生后的细胞以及体外的神经元、神经胶质细胞和NPCs存在非整倍性。非整倍性的一个可能后果是通过杂合性缺失(LOH)改变基因表达。这在一个LOH模型中进行了检测:在15号染色体上携带普遍表达的增强型绿色荧光蛋白(eGFP)转基因的半合子小鼠中,转基因表达缺失。同时检测eGFP表达、转基因丰度和15号染色体拷贝数表明,大量不表达eGFP的活SVZ和OB细胞丢失了一条15号染色体;这些细胞中的eGFP转基因也丢失了。尽管基因表达谱分析显示相对于表达GFP的对照,几个基因的表达水平发生了变化,但15号染色体上存在LOH的细胞在形态上是正常的,其增殖或凋亡速率与体外整倍体细胞相似。这些发现支持了这样一种观点,即NPCs以及出生后的神经元和神经胶质细胞在体内可能是非整倍体,并且染色体非整倍性可使活神经细胞中的功能基因表达发生永久性改变。