Degenerative Disease Program at the Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
Degenerative Disease Program at the Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
J Biol Chem. 2020 Sep 4;295(36):12786-12795. doi: 10.1074/jbc.REV120.009192. Epub 2020 Jul 22.
A new form of somatic gene recombination (SGR) has been identified in the human brain that affects the Alzheimer's disease gene, amyloid precursor protein (). SGR occurs when a gene sequence is cut and recombined within a single cell's genomic DNA, generally independent of DNA replication and the cell cycle. The newly identified brain SGR produces genomic complementary DNAs (gencDNAs) lacking introns, which integrate into locations distinct from germline loci. This brief review will present an overview of likely related recombination mechanisms and genomic cDNA-like sequences that implicate evolutionary origins for brain SGR. Similarities and differences exist between brain SGR and VDJ recombination in the immune system, the first identified SGR form that now has a well-defined enzymatic machinery. Both require gene transcription, but brain SGR uses an RNA intermediate and reverse transcriptase (RT) activity, which are characteristics shared with endogenous retrotransposons. The identified gencDNAs have similarities to other cDNA-like sequences existing throughout phylogeny, including intron-less genes and inactive germline processed pseudogenes, with likely overlapping biosynthetic processes. gencDNAs arise somatically in an individual to produce multiple copies; can be functional; appear most frequently within postmitotic cells; have diverse sequences; change with age; and can change with disease state. Normally occurring brain SGR may represent a mechanism for gene optimization and long-term cellular memory, whereas its dysregulation could underlie multiple brain disorders and, potentially, other diseases like cancer. The involvement of RT activity implicates already Food and Drug Administration-approved RT inhibitors as possible near-term interventions for managing SGR-associated diseases and suggest next-generation therapeutics targeting SGR elements.
一种新的体基因重组(SGR)形式已在人类大脑中被识别,它会影响阿尔茨海默病基因,即淀粉样前体蛋白()。SGR 发生在一个基因序列在单个细胞的基因组 DNA 中被切割和重组时,通常独立于 DNA 复制和细胞周期。新发现的大脑 SGR 产生缺乏内含子的基因组互补 DNA(gencDNA),这些 gencDNA 整合到与种系基因座不同的位置。这篇简短的综述将概述可能相关的重组机制和基因组 cDNA 样序列,这些序列暗示了大脑 SGR 的进化起源。大脑 SGR 与免疫系统中的 VDJ 重组存在相似性和差异,VDJ 重组是第一种被识别的 SGR 形式,现在已经有了明确的酶机制。两者都需要基因转录,但大脑 SGR 使用 RNA 中间体和逆转录酶(RT)活性,这是与内源性逆转录转座子共享的特征。已识别的 gencDNA 与整个系统发育过程中存在的其他 cDNA 样序列具有相似性,包括无内含子基因和无活性的种系加工假基因,可能具有重叠的生物合成过程。gencDNA 以个体的体细胞形式产生多个副本;可以具有功能;最常出现在有丝分裂后细胞中;具有多样化的序列;随年龄变化;并且可以随疾病状态而变化。正常发生的大脑 SGR 可能代表基因优化和长期细胞记忆的机制,而其失调可能是多种大脑疾病的基础,并且可能是其他疾病(如癌症)的基础。RT 活性的参与暗示了已经获得美国食品和药物管理局批准的 RT 抑制剂可能是管理 SGR 相关疾病的近期干预措施,并表明针对 SGR 元件的下一代治疗方法。