Kang Yan, Engelke Klaus, Kalender Willi A
Institute of Medical Physics University of Erlangen-Nürnberg, D-91054 Erlangen, Germany.
IEEE Trans Med Imaging. 2003 May;22(5):586-98. doi: 10.1109/TMI.2003.812265.
We developed a highly automated three-dimensionally based method for the segmentation of bone in volumetric computed tomography (CT) datasets. The multistep approach starts with three-dimensional (3-D) region-growing using local adaptive thresholds followed by procedures to correct for remaining boundary discontinuities and a subsequent anatomically oriented boundary adjustment using local values of cortical bone density. We describe the details of our approach and show applications in the proximal femur, the knee, and the skull. The accuracy of the determination of geometrical parameters was analyzed using CT scans of the semi-anthropomorphic European spine phantom. Depending on the settings of the segmentation parameters cortical thickness could be determined with an accuracy corresponding to the side length of 1 to 2.5 voxels. The impact of noise on the segmentation was investigated by artificially adding noise to the CT data. An increase in noise by factors of two and five changed cortical thickness corresponding to the side length of one voxel. Intraoperator and interoperator precision was analyzed by repeated analysis of nine pelvic CT scans. Precision errors were smaller than 1% for trabecular and total volumes and smaller than 2% for cortical thickness. Intraoperator and interoperator precision errors were not significantly different. Our segmentation approach shows: 1) high accuracy and precision and is 2) robust to noise, 3) insensitive to user-defined thresholds, 4) highly automated and fast, and 5) easy to initialize.
我们开发了一种高度自动化的基于三维的方法,用于在容积计算机断层扫描(CT)数据集中分割骨骼。该多步骤方法首先使用局部自适应阈值进行三维(3-D)区域生长,随后进行校正剩余边界不连续性的程序,以及使用皮质骨密度局部值进行后续的解剖学定向边界调整。我们描述了我们方法的细节,并展示了在股骨近端、膝盖和颅骨中的应用。使用半拟人化欧洲脊柱模型的CT扫描分析了几何参数测定的准确性。根据分割参数的设置,皮质厚度的测定精度对应于1至2.5个体素的边长。通过向CT数据中人工添加噪声来研究噪声对分割的影响。噪声增加两倍和五倍时,皮质厚度的变化对应于一个体素的边长。通过对九次骨盆CT扫描的重复分析来分析操作员内部和操作员之间的精度。小梁体积和总体积的精度误差小于1%,皮质厚度的精度误差小于2%。操作员内部和操作员之间的精度误差没有显著差异。我们的分割方法显示:1)具有高精度和高精准度,2)对噪声具有鲁棒性,3)对用户定义的阈值不敏感,4)高度自动化且快速,5)易于初始化。