Suppr超能文献

树突棘的结构-稳定性-功能关系

Structure-stability-function relationships of dendritic spines.

作者信息

Kasai Haruo, Matsuzaki Masanori, Noguchi Jun, Yasumatsu Nobuaki, Nakahara Hiroyuki

机构信息

Department of Cell Physiology, National Institute for Physiological Sciences and The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan.

出版信息

Trends Neurosci. 2003 Jul;26(7):360-8. doi: 10.1016/S0166-2236(03)00162-0.

Abstract

Dendritic spines, which receive most of the excitatory synaptic input in the cerebral cortex, are heterogeneous with regard to their structure, stability and function. Spines with large heads are stable, express large numbers of AMPA-type glutamate receptors, and contribute to strong synaptic connections. By contrast, spines with small heads are motile and unstable and contribute to weak or silent synaptic connections. Their structure-stability-function relationships suggest that large and small spines are "memory spines" and "learning spines", respectively. Given that turnover of glutamate receptors is rapid, spine structure and the underlying organization of the actin cytoskeleton are likely to be major determinants of fast synaptic transmission and, therefore, are likely to provide a physical basis for memory in cortical neuronal networks. Characterization of supramolecular complexes responsible for synaptic memory and learning is key to the understanding of brain function and disease.

摘要

树突棘接收大脑皮层中大部分兴奋性突触输入,其结构、稳定性和功能存在异质性。头部较大的树突棘稳定,表达大量AMPA型谷氨酸受体,并有助于形成强突触连接。相比之下,头部较小的树突棘具有可动性且不稳定,有助于形成弱或沉默的突触连接。它们的结构-稳定性-功能关系表明,大、小树突棘分别是“记忆棘”和“学习棘”。鉴于谷氨酸受体的更新速度很快,树突棘结构和肌动蛋白细胞骨架的基础组织可能是快速突触传递的主要决定因素,因此可能为皮层神经元网络中的记忆提供物理基础。负责突触记忆和学习的超分子复合物的表征是理解脑功能和疾病的关键。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验