Daoudal Gaël, Debanne Dominique
Institut National de la Santé Et de la Recherche Médicale UMR464 Neurobiologie des Canaux Ioniques, Institut Fédératif Jean Roche, Faculté de Médecine Secteur Nord, Université d'Aix-Marseille II, 13916 Marseille, France.
Learn Mem. 2003 Nov-Dec;10(6):456-65. doi: 10.1101/lm.64103.
Spatio-temporal configurations of distributed activity in the brain is thought to contribute to the coding of neuronal information and synaptic contacts between nerve cells could play a central role in the formation of privileged pathways of activity. Synaptic plasticity is not the exclusive mode of regulation of information processing in the brain, and persistent regulations of ionic conductances in some specialized neuronal areas such as the dendrites, the cell body, and the axon could also modulate, in the long-term, the propagation of neuronal information. Persistent changes in intrinsic excitability have been reported in several brain areas in which activity is elevated during a classical conditioning. The role of synaptic activity seems to be a determinant in the induction, but the learning rules and the underlying mechanisms remain to be defined. We discuss here the role of synaptic activity in the induction of intrinsic plasticity in cortical, hippocampal, and cerebellar neurons. Activation of glutamate receptors initiates a long-term modification in neuronal excitability that may represent a parallel, synergistic substrate for learning and memory. Similar to synaptic plasticity, long-lasting intrinsic plasticity appears to be bidirectional and to express a certain level of input or cell specificity. These nonsynaptic forms of plasticity affect the signal propagation in the axon, the dendrites, and the soma. They not only share common learning rules and induction pathways with the better-known synaptic plasticity such as NMDA receptor dependent LTP and LTD, but also contribute in synergy with these synaptic changes to the formation of a coherent engram.
大脑中分布式活动的时空配置被认为有助于神经元信息的编码,神经细胞之间的突触联系可能在形成特定活动通路中发挥核心作用。突触可塑性并非大脑中信息处理调节的唯一模式,在某些特殊神经元区域(如树突、细胞体和轴突)中离子电导的持续调节也可能长期调节神经元信息的传播。在经典条件反射过程中活动增强的几个脑区中,已报道存在内在兴奋性的持续变化。突触活动的作用似乎是诱导过程中的一个决定因素,但学习规则和潜在机制仍有待确定。我们在此讨论突触活动在皮层、海马和小脑神经元内在可塑性诱导中的作用。谷氨酸受体的激活引发神经元兴奋性的长期改变,这可能代表学习和记忆的一种平行、协同的基础。与突触可塑性类似,持久的内在可塑性似乎是双向的,并表现出一定程度的输入或细胞特异性。这些非突触形式的可塑性影响轴突、树突和胞体中的信号传播。它们不仅与诸如NMDA受体依赖性长时程增强和长时程抑制等更为人熟知的突触可塑性共享共同的学习规则和诱导途径,还与这些突触变化协同作用,促进连贯记忆痕迹的形成。