Suppr超能文献

应用数学模型预防治疗期间抗生素耐药细菌群体的体内扩增。

Application of a mathematical model to prevent in vivo amplification of antibiotic-resistant bacterial populations during therapy.

作者信息

Jumbe Nelson, Louie Arnold, Leary Robert, Liu Weiguo, Deziel Mark R, Tam Vincent H, Bachhawat Reetu, Freeman Christopher, Kahn James B, Bush Karen, Dudley Michael N, Miller Michael H, Drusano George L

机构信息

Ordway Research Institute, Albany, New York 12208, USA.

出版信息

J Clin Invest. 2003 Jul;112(2):275-85. doi: 10.1172/JCI16814.

Abstract

The worldwide increase in the prevalence of multi-antibiotic-resistant bacteria has threatened the physician's ability to provide appropriate therapy for infections. The relationship between antimicrobial drug concentration and infecting pathogen population reduction is of primary interest. Using data derived from mice infected with the bacterium Pseudomonas aeruginosa and treated with a fluoroquinolone antibiotic, a mathematical model was developed that described relationships between antimicrobial drug exposures and changes in drug-susceptible and -resistant bacterial subpopulations at an infection site. Dosing regimens and consequent drug exposures that amplify or suppress the emergence of resistant bacterial subpopulations were identified and prospectively validated. Resistant clones selected in vivo by suboptimal regimens were characterized. No mutations were identified in the quinolone resistance-determining regions of gyrA/B or parC/E. However, all resistant clones demonstrated efflux pump overexpression. At base line, MexAB-OprM, MexCD-OprJ, and MexEF-OprN were represented in the drug-resistant population. After 28 hours of therapy, MexCD-OprJ became the predominant pump expressed in the resistant clones. The likelihood of achieving resistance-suppression exposure in humans with a clinically prescribed antibiotic dose was determined. The methods developed in this study provide insight regarding how mathematical models can be used to identify rational dosing regimens that suppress the amplification of the resistant mutant population.

摘要

全球多重耐药菌患病率的上升威胁到医生为感染提供适当治疗的能力。抗菌药物浓度与感染病原体数量减少之间的关系是主要关注点。利用感染铜绿假单胞菌并用氟喹诺酮抗生素治疗的小鼠的数据,建立了一个数学模型,该模型描述了抗菌药物暴露与感染部位药敏和耐药细菌亚群变化之间的关系。确定并前瞻性验证了放大或抑制耐药细菌亚群出现的给药方案及相应的药物暴露情况。对次优方案在体内选择的耐药克隆进行了表征。在gyrA/B或parC/E的喹诺酮耐药决定区域未发现突变。然而,所有耐药克隆均表现出外排泵过表达。在基线时,MexAB-OprM、MexCD-OprJ和MexEF-OprN存在于耐药菌群体中。治疗28小时后,MexCD-OprJ成为耐药克隆中表达的主要泵。确定了临床规定抗生素剂量在人体中实现耐药抑制暴露的可能性。本研究中开发的方法为如何利用数学模型确定抑制耐药突变群体扩增的合理给药方案提供了见解。

相似文献

引用本文的文献

本文引用的文献

2
Does the dose matter?剂量重要吗?
Clin Infect Dis. 2001 Sep 15;33 Suppl 3:S233-7. doi: 10.1086/321854.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验