Horn Paul S, Pesce Amadeo J
Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221-0025, USA.
Clin Chim Acta. 2003 Aug;334(1-2):5-23. doi: 10.1016/s0009-8981(03)00133-5.
Reference intervals serve as the basis of laboratory testing and aid the physician in differentiating between the healthy and diseased patient. Standard methods for determining the reference interval are to define and obtain a healthy population of at least 120 individuals and use nonparametric estimates of the 95% reference interval. This method is less accurate if the group size is significantly less and does not allow for exclusion of outliers. In order to overcome these limitations many authors in the current literature report reference intervals after arbitrary truncation of the data or use inappropriate parametric calculations. We argue that the use of outlier removal and robust estimators, with or without transformation to normality, address the shortcomings of the standard method and eliminate the need for employing less valid methods.To test these methods of analysis well-defined test groups are required. In a few studies physician-determined health status is provided for each subject along with commonly measured analytes. The NHANES and Fernald studies provide such groups. With such data it is possible to show the range of effects on the reference interval width by including a known non-healthy subgroup. With the NHANES data the effect ranged from negligible to a 30% increase in reference interval width. We found that use of outlier detection with the robust estimator yielded reference intervals that were closer to those of the true healthy group.Another issue is one of demographics. That is, whether or not one should derive separate reference intervals for different demographic groups, e.g., males and females. The standard mathematical test for deriving separate reference intervals is due to Harris and Boyd. Using the NHANES data we examined 33 analytes for each of three ethnic groups (separated by genders). We used the Harris and Boyd procedure and observed that it was necessary to derive separate reference intervals for approximately 30% of the comparisons. The most notable analytes were glucose and gamma GT.The methods used by most laboratories have similar precision, identical units, are linearly related (often on a 1:1 basis) and correlate well with each other. As a result the only difference is the method bias. By using the reference interval width, this bias is eliminated. We argue that the log ratio of the reference interval widths is a good estimate of the variability between groups.
参考区间是实验室检测的基础,有助于医生区分健康患者和患病患者。确定参考区间的标准方法是定义并获得至少120名个体的健康人群,并使用95%参考区间的非参数估计。如果样本量显著较少,该方法的准确性会降低,并且不允许排除异常值。为了克服这些局限性,当前文献中的许多作者在对数据进行任意截断后报告参考区间,或者使用不恰当的参数计算方法。我们认为,使用异常值去除和稳健估计器,无论是否进行正态变换,都能解决标准方法的缺点,并且无需采用不太有效的方法。为了测试这些分析方法,需要定义明确的测试组。在一些研究中,为每个受试者提供了医生确定的健康状况以及常用的分析物测量值。美国国家健康和营养检查调查(NHANES)和费纳德研究提供了这样的组。有了这些数据,通过纳入已知的非健康亚组,可以显示对参考区间宽度的影响范围。使用NHANES数据时,影响范围从可忽略不计到参考区间宽度增加30%。我们发现,使用带有稳健估计器的异常值检测方法得出的参考区间更接近真正健康组的参考区间。
另一个问题是人口统计学问题。也就是说,是否应该为不同的人口群体(例如男性和女性)得出单独的参考区间。推导单独参考区间的标准数学检验方法是由哈里斯和博伊德提出的。我们使用NHANES数据,对三个种族群体(按性别分开)中的每一个群体的33种分析物进行了研究。我们采用了哈里斯和博伊德的方法,观察到大约30%的比较需要推导单独的参考区间。最值得注意的分析物是葡萄糖和γ-谷氨酰转移酶(gamma GT)。
大多数实验室使用的方法具有相似的精密度、相同的单位,呈线性相关(通常是1:1的关系),并且相互之间相关性良好。因此,唯一的差异是方法偏差。通过使用参考区间宽度,这种偏差得以消除。我们认为,参考区间宽度的对数比是组间变异性的良好估计。