Suppr超能文献

CLCA protein and chloride transport in canine retinal pigment epithelium.

作者信息

Loewen Matthew E, Smith Nicola K, Hamilton Don L, Grahn Bruce H, Forsyth George W

机构信息

Department of Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan, Canada S7N 5B4.

出版信息

Am J Physiol Cell Physiol. 2003 Nov;285(5):C1314-21. doi: 10.1152/ajpcell.00210.2003. Epub 2003 Jul 16.

Abstract

Problems in ion and fluid transfer across the retinal pigment epithelium (RPE) are a probable cause of inappropriate accumulations of fluid between the photoreceptors of the retina and the RPE. The activities of Cl- transporters involved in basal fluid transfer across the RPE have been compared to determine whether Ca2+- or cAMP-dependent channels may be responsible for basal housekeeping levels of secretory activity in this tissue. The role of a candidate Ca2+-dependent CLCA protein in the basal RPE transport of Cl- has been investigated. Low concentrations of the Cl- conductance inhibitors glibenclamide and 5-nitro-2-(3-phenylpropylamino)benzoate reduced the short-circuit current in dog RPE preparations mounted in Ussing chambers and decreased the Ca2+-dependent Cl- efflux from fibroblasts expressing the pCLCA1 Cl- conductance regulator. However, these same agents did not inhibit the rate of Cl- release from cultured fibroblasts expressing the cystic fibrosis transmembrane regulator (CFTR) conductive Cl- channel. Addition of ionomycin to primary cultures of canine RPE cells or to fibroblasts expressing the pCLCA1 channel regulator increased the rate of release of Cl- from both types of cultured cells. However, the presence of pCLCA1 also increased cAMP-dependent Cl- release from fibroblasts expressing CFTR. We conclude that Ca2+-dependent Cl- transport may be more important than cAMP-dependent Cl- transport for normal fluid secretion across the RPE. Furthermore, CLCA proteins expressed in the RPE appear to regulate the activity of other Cl- transporters, rather than functioning as primary ion transport proteins.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验