Suppr超能文献

基于TOPS-MODE的源自异类化合物系列的定量构效关系。在新型除草剂设计中的应用。

TOPS-MODE based QSARs derived from heterogeneous series of compounds. Applications to the design of new herbicides.

作者信息

Pérez González Maykel, Gonzalez Díaz Humberto, Molina Ruiz Reinaldo, Cabrera Miguel A, Ramos de Armas Ronal

机构信息

Chemical Bioactives Center, Central University of Las Villas, Santa Clara, C. P. 54830, Villa Clara, Cuba.

出版信息

J Chem Inf Comput Sci. 2003 Jul-Aug;43(4):1192-9. doi: 10.1021/ci034039+.

Abstract

A new application of TOPological Sub-structural MOlecular DEsign (TOPS-MODE) was carried out in herbicides using computer-aided molecular design. Two series of compounds, one containing herbicide and the other containing nonherbicide compounds, were processed by a k-Means Cluster Analysis in order to design the training and prediction sets. A linear classification function to discriminate the herbicides from the nonherbicide compounds was developed. The model correctly and clearly classified 88% of active and 94% of inactive compounds in the training set. More specifically, the model showed a good global classification of 91%, i.e., (168 cases out of 185). While in the prediction set, they showed an overall predictability of 91% and 92% for active and inactive compounds, being the global percentage of good classification of 92%. To assess the range of model applicability, a virtual screening of structurally heterogeneous series of herbicidal compounds was carried out. Two hundred eighty-four out of 332 were correctly classified (86%). Furthermore this paper describes a fragment analysis in order to determine the contribution of several fragments toward herbicidal property; also the present of halogens in the selected fragments were analyzed. It seems that the present TOPS-MODE based QSAR is the first alternate general "in silico" technique to experimentation in herbicides discovery.

摘要

采用计算机辅助分子设计方法,对拓扑子结构分子设计(TOPS-MODE)在除草剂领域进行了新的应用研究。通过k均值聚类分析对两组化合物进行处理,一组含有除草剂化合物,另一组含有非除草剂化合物,以此来设计训练集和预测集。开发了一种线性分类函数,用于区分除草剂和非除草剂化合物。该模型对训练集中88%的活性化合物和94%的非活性化合物进行了正确且清晰的分类。更具体地说,该模型的整体分类准确率为91%,即185个案例中有168个分类正确。在预测集中,活性化合物和非活性化合物的整体预测准确率分别为91%和92%,整体良好分类率为92%。为了评估模型的适用范围,对一系列结构各异的除草化合物进行了虚拟筛选。332个化合物中有284个被正确分类(86%)。此外,本文还进行了片段分析,以确定几个片段对除草性能的贡献;同时还分析了所选片段中卤素的存在情况。基于TOPS-MODE的定量构效关系似乎是除草剂发现实验中第一种替代常规“计算机模拟”技术的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验