Suppr超能文献

寻找新型酪氨酸酶抑制剂的龙方法:生物信息学鉴定及体外实验分析

Dragon method for finding novel tyrosinase inhibitors: Biosilico identification and experimental in vitro assays.

作者信息

Casañola-Martín Gerardo M, Marrero-Ponce Yovani, Khan Mahmud Tareq Hassan, Ather Arjumand, Khan Khalid M, Torrens Francisco, Rotondo Richard

机构信息

Unit of Computer-Aided Molecular Biosilico Discovery and Bioinformatic Research (CAMD-BIR Unit), Department of Pharmacy, Faculty of Chemistry-Pharmacy, Central University of Las Villas, Santa Clara, 54830 Villa Clara, Cuba.

出版信息

Eur J Med Chem. 2007 Nov-Dec;42(11-12):1370-81. doi: 10.1016/j.ejmech.2007.01.026. Epub 2007 Feb 23.

Abstract

QSAR (quantitative structure-activity relationship) studies of tyrosinase inhibitors employing Dragon descriptors and linear discriminant analysis (LDA) are presented here. A data set of 653 compounds, 245 with tyrosinase inhibitory activity and 408 having other clinical uses were used. The active data set was processed by k-means cluster analysis in order to design training and prediction series. Seven LDA-based QSAR models were obtained. The discriminant functions applied showed a globally good classification of 99.79% for the best model Class=-96.067+1.988 x 10(2)X0Av +9 1.907 BIC3 + 6.853 CIC1 in the training set. External validation processes to assess the robustness and predictive power of the obtained model were carried out. This external prediction set had an accuracy of 99.44%. After that, the developed models were used in ligand-based virtual screening of tyrosinase inhibitors from the literature and never considered in either training or predicting series. In this case, all screened chemicals were correctly classified by the LDA-based QSAR models. As a final point, these fitted models were used in the screening of new bipiperidine series as new tyrosinase inhibitors. These methods are an adequate alternative to the process of selection/identification of new bioactive compounds. The biosilico assays and in vitro results of inhibitory activity on mushroom tyrosinase showed good correspondence. It is important to stand out that compound BP4 (IC(50)=1.72 microM) showed higher activity in the inhibition against the enzyme than reference compound kojic acid (IC(50)=16.67 microM) and l-mimosine (IC(50)=3.68 microM). These results support the role of biosilico algorithm for the identification of new tyrosinase inhibitor compounds.

摘要

本文介绍了利用Dragon描述符和线性判别分析(LDA)对酪氨酸酶抑制剂进行的定量构效关系(QSAR)研究。使用了一个包含653种化合物的数据集,其中245种具有酪氨酸酶抑制活性,408种具有其他临床用途。为了设计训练集和预测集,对活性数据集进行了k均值聚类分析。获得了7个基于LDA的QSAR模型。所应用的判别函数在训练集中对最佳模型Class=-96.067+1.988 x 10(2)X0Av +9 1.907 BIC3 + 6.853 CIC1的全局分类准确率为99.79%。进行了外部验证过程以评估所得模型的稳健性和预测能力。该外部预测集的准确率为99.44%。之后,将所开发的模型用于基于配体的酪氨酸酶抑制剂虚拟筛选,这些抑制剂来自文献且未在训练集或预测集中考虑。在这种情况下,所有筛选出的化学物质都被基于LDA的QSAR模型正确分类。最后,这些拟合模型用于筛选新的双哌啶系列作为新型酪氨酸酶抑制剂。这些方法是选择/鉴定新生物活性化合物过程的合适替代方法。生物计算机分析和对蘑菇酪氨酸酶抑制活性的体外结果显示出良好的一致性。值得注意的是,化合物BP4(IC(50)=1.72 microM)对该酶的抑制活性高于参考化合物曲酸(IC(50)=16.67 microM)和l-含羞草碱(IC(50)=3.68 microM)。这些结果支持了生物计算机算法在鉴定新型酪氨酸酶抑制剂化合物中的作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验