Mandema J W, Verotta D, Sheiner L B
Department of Pharmacy, School of Pharmacy, University of California, San Francisco 94143.
J Pharmacokinet Biopharm. 1992 Oct;20(5):511-28. doi: 10.1007/BF01061469.
One major task in clinical pharmacology is to determine the pharmacokinetic-pharmacodynamic (PK-PD) parameters of a drug in a patient population. NONMEM is a program commonly used to build population PK-PD models, that is, models that characterize the relationship between a patient's PK-PD parameters and other patient specific covariates such as the patient's (patho) physiological condition, concomitant drug therapy, etc. This paper extends a previously described approach to efficiently find the relationships between the PK-PD parameters and covariates. In a first step, individual estimates of the PK-PD parameters are obtained as empirical Bayes estimates, based on a prior NONMEN fit using no covariates. In a second step, the individual PK-PD parameter estimates are regressed on the covariates using a generalized additive model. In a third and final step, NONMEM is used to optimize and finalize the population model. Four real-data examples are used to demonstrate the effectiveness of the approach. The examples show that the generalized additive model for the individual parameter estimates is a good initial guess for the NONMEM population model. In all four examples, the approach successfully selects the most important covariates and their functional representation. The great advantage of this approach is speed. The time required to derive a population model is markedly reduced because the number of necessary NONMEM runs is reduced. Furthermore, the approach provides a nice graphical representation of the relationships between the PK-PD parameters and covariates.
临床药理学的一项主要任务是确定药物在患者群体中的药代动力学-药效学(PK-PD)参数。NONMEM是一个常用于构建群体PK-PD模型的程序,即表征患者PK-PD参数与其他患者特定协变量(如患者的(病理)生理状况、联合药物治疗等)之间关系的模型。本文扩展了一种先前描述的方法,以有效地找到PK-PD参数与协变量之间的关系。第一步,基于不使用协变量的先验NONMEN拟合,将PK-PD参数的个体估计值作为经验贝叶斯估计值获得。第二步,使用广义相加模型将个体PK-PD参数估计值对协变量进行回归。在第三步也是最后一步,使用NONMEM对群体模型进行优化和最终确定。使用四个实际数据示例来证明该方法的有效性。这些示例表明,个体参数估计值的广义相加模型是NONMEM群体模型的良好初始猜测。在所有四个示例中,该方法成功选择了最重要的协变量及其函数表示形式。这种方法的最大优点是速度快。由于减少了必要的NONMEM运行次数,推导群体模型所需的时间显著减少。此外,该方法还提供了PK-PD参数与协变量之间关系的良好图形表示。