Suppr超能文献

群体药代动力学的协变量模型选择方法:从结构方程模型到人工智能的现有方法系统综述

Covariate Model Selection Approaches for Population Pharmacokinetics: A Systematic Review of Existing Methods, From SCM to AI.

作者信息

Karlsen Mélanie, Khier Sonia, Fabre David, Marchionni David, Azé Jérôme, Bringay Sandra, Poncelet Pascal, Calvier Elisa

机构信息

LIRMM, Laboratory of Computer Science, Robotics and Microelectronics in Montpellier, CNRS, Montpellier University, Montpellier, France.

Pharmacokinetics Dynamics and Metabolism/Translational Medicine and Early Development, Sanofi R&D Montpellier, Montpellier, France.

出版信息

CPT Pharmacometrics Syst Pharmacol. 2025 Apr;14(4):621-639. doi: 10.1002/psp4.13306. Epub 2025 Jan 20.

Abstract

A growing number of covariate modeling methods have been proposed in the field of popPK modeling, but limited information exists on how they all compare. The objective of this study was to perform a systematic review of all popPK covariate modeling methods, focusing on assessing the existing knowledge on their performances. For each method of each article included in this review, evaluation setting, performance metrics along with their associated values, and relative computational times were reported when available. Evaluation settings report was done for uncertainty assessment of communicated results. Results showed that EBEs-based ML methods stood out as the best covariate selection methods. AALASSO, a hybrid genetic algorithm, FREM with a clinical significance criterion and SCM+ with stagewise filtering were the best covariate model selection techniques-AALASSO being the very best one. Results also showed a lack of consensus on how to benchmark simulated datasets of different scenarios when evaluating method performances, but also on which metrics to use for method evaluation. We propose to systematically report TPR (sensitivity), FPR (Type I error), FNR (Type II error), TNR (specificity), covariate parameter error bias (MPE) and precision (RMSE), clinical relevance, and model fitness by means of BIC, concentration prediction error bias (MPE), and precision (RMSE) of new proposed methods and compare them with SCM. We propose to systematically combine covariate selection techniques to SCM or FFEM to allow for comparison with SCM. We also highlight the need for an open-source benchmark of simulated datasets on a representative set of scenarios.

摘要

在群体药代动力学(popPK)建模领域,已经提出了越来越多的协变量建模方法,但关于它们之间如何比较的信息却很有限。本研究的目的是对所有群体药代动力学协变量建模方法进行系统综述,重点评估关于其性能的现有知识。对于本综述中纳入的每篇文章的每种方法,如有可用信息,将报告评估设置、性能指标及其相关值以及相对计算时间。评估设置报告是为了对传达结果进行不确定性评估。结果表明,基于经验贝叶斯估计(EBEs)的机器学习方法是最佳的协变量选择方法。自适应弹性网最小绝对收缩和选择算子(AALASSO)、一种混合遗传算法、具有临床意义标准的灵活估计方法(FREM)以及具有逐步筛选的稀疏条件均值(SCM+)是最佳的协变量模型选择技术——AALASSO是其中最好的一种。结果还表明,在评估方法性能时,对于如何对不同场景下模拟数据集进行基准测试,以及使用哪些指标进行方法评估,都缺乏共识。我们建议通过新提出方法的贝叶斯信息准则(BIC)、浓度预测误差偏差(MPE)和精度(均方根误差,RMSE),系统地报告真阳性率(TPR,敏感性)、假阳性率(FPR,I型错误)、假阴性率(FNR,II型错误)、真阴性率(TNR,特异性)、协变量参数误差偏差(MPE)和精度(RMSE)、临床相关性以及模型拟合度,并将它们与SCM进行比较。我们建议将协变量选择技术系统地与SCM或灵活固定效应模型(FFEM)相结合,以便与SCM进行比较。我们还强调了在一组代表性场景下需要一个模拟数据集的开源基准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0919/12001260/96f1484e3ac0/PSP4-14-621-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验