Suppr超能文献

喹啉酸对枯草芽孢杆菌NAD激酶的变构调节

Allosteric regulation of Bacillus subtilis NAD kinase by quinolinic acid.

作者信息

Garavaglia Silvia, Galizzi Alessandro, Rizzi Menico

机构信息

DISCAFF-INFM, University of Piemonte Orientale Amedeo Avogadro, 28100 Novara, Italy.

出版信息

J Bacteriol. 2003 Aug;185(16):4844-50. doi: 10.1128/JB.185.16.4844-4850.2003.

Abstract

NADP is essential for biosynthetic pathways, energy, and signal transduction. In living organisms, NADP biosynthesis proceeds through the phosphorylation of NAD with a reaction catalyzed by NAD kinase. We expressed, purified, and characterized Bacillus subtilis NAD kinase. This enzyme represents a new member of the inorganic polyphosphate [poly(P)]/ATP NAD kinase subfamily, as it can use poly(P), ATP, or other nucleoside triphosphates as phosphoryl donors. NAD kinase showed marked positive cooperativity for the substrates ATP and poly(P) and was inhibited by its product, NADP, suggesting that the enzyme plays a major regulatory role in NADP biosynthesis. We discovered that quinolinic acid, a central metabolite in NAD(P) biosynthesis, behaved like a strong allosteric activator for the enzyme. Therefore, we propose that NAD kinase is a key enzyme for both NADP metabolism and quinolinic acid metabolism.

摘要

烟酰胺腺嘌呤二核苷酸磷酸(NADP)对于生物合成途径、能量代谢及信号转导至关重要。在活生物体中,NADP的生物合成是通过烟酰胺腺嘌呤二核苷酸(NAD)的磷酸化反应进行的,该反应由NAD激酶催化。我们对枯草芽孢杆菌NAD激酶进行了表达、纯化及特性鉴定。这种酶代表了无机多聚磷酸[poly(P)]/ATP NAD激酶亚家族的一个新成员,因为它可以使用多聚磷酸、ATP或其他核苷三磷酸作为磷酰基供体。NAD激酶对底物ATP和多聚磷酸表现出明显的正协同性,并受到其产物NADP的抑制,这表明该酶在NADP生物合成中起主要调节作用。我们发现,喹啉酸作为NAD(P)生物合成中的一种核心代谢物,对该酶表现出强效别构激活剂的作用。因此,我们提出NAD激酶是NADP代谢和喹啉酸代谢的关键酶。

相似文献

1
Allosteric regulation of Bacillus subtilis NAD kinase by quinolinic acid.
J Bacteriol. 2003 Aug;185(16):4844-50. doi: 10.1128/JB.185.16.4844-4850.2003.
2
Overexpression, purification, and characterization of ATP-NAD kinase of Sphingomonas sp. A1.
Protein Expr Purif. 2004 Jul;36(1):124-30. doi: 10.1016/j.pep.2004.03.012.
4
Molecular characterization of Escherichia coli NAD kinase.
Eur J Biochem. 2001 Aug;268(15):4359-65. doi: 10.1046/j.1432-1327.2001.02358.x.
5
NAD kinase from Bacillus licheniformis: inhibition by NADP and other properties.
Arch Microbiol. 1986 May;144(4):313-6. doi: 10.1007/BF00409878.
6
Biochemical and functional characterization of novel NADH kinase in the enteric protozoan parasite Entamoeba histolytica.
Biochimie. 2013 Feb;95(2):309-19. doi: 10.1016/j.biochi.2012.09.034. Epub 2012 Oct 13.
8
Overexpression of NAD kinases improves the L-isoleucine biosynthesis in Corynebacterium glutamicum ssp. lactofermentum.
Enzyme Microb Technol. 2012 Jul 15;51(2):73-80. doi: 10.1016/j.enzmictec.2012.04.003. Epub 2012 Apr 21.
9
Inorganic Polyphosphate/ATP-NAD kinase of Micrococcus flavus and Mycobacterium tuberculosis H37Rv.
Biochem Biophys Res Commun. 2000 Sep 16;276(1):57-63. doi: 10.1006/bbrc.2000.3433.

引用本文的文献

1
Polyphosphate: The "Dark Matter" of Bacterial Chromatin Structure.
Mol Microbiol. 2025 Mar;123(3):279-293. doi: 10.1111/mmi.15350. Epub 2025 Feb 18.
3
Polyphosphate-dependent nicotinamide adenine dinucleotide (NAD) kinase: A novel missing link in human mitochondria.
Proc Jpn Acad Ser B Phys Biol Sci. 2021;97(8):479-498. doi: 10.2183/pjab.97.024.
4
Enzymatic Characteristics of a Polyphosphate/ATP-NAD Kinase, PanK, from Myxococcus xanthus.
Curr Microbiol. 2020 Feb;77(2):173-178. doi: 10.1007/s00284-019-01810-9. Epub 2019 Nov 18.
5
Calmodulin Is the Fundamental Regulator of NADK-Mediated NAD Signaling in Plants.
Front Plant Sci. 2019 Jun 5;10:681. doi: 10.3389/fpls.2019.00681. eCollection 2019.
6
NAD Kinases: Metabolic Targets Controlling Redox Co-enzymes and Reducing Power Partitioning in Plant Stress and Development.
Front Plant Sci. 2018 Mar 23;9:379. doi: 10.3389/fpls.2018.00379. eCollection 2018.
7
Emissive Synthetic Cofactors: Enzymatic Interconversions of A Analogues of ATP, NAD , NADH, NADP , and NADPH.
Angew Chem Int Ed Engl. 2018 Jan 22;57(4):1087-1090. doi: 10.1002/anie.201711935. Epub 2017 Dec 21.
8
Biogenesis and Homeostasis of Nicotinamide Adenine Dinucleotide Cofactor.
EcoSal Plus. 2009 Aug;3(2). doi: 10.1128/ecosalplus.3.6.3.10.
9
NADPH-generating systems in bacteria and archaea.
Front Microbiol. 2015 Jul 29;6:742. doi: 10.3389/fmicb.2015.00742. eCollection 2015.

本文引用的文献

1
Essential Bacillus subtilis genes.
Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4678-83. doi: 10.1073/pnas.0730515100. Epub 2003 Apr 7.
2
The pharmacological manipulation of glutamate receptors and neuroprotection.
Eur J Pharmacol. 2002 Jul 5;447(2-3):285-96. doi: 10.1016/s0014-2999(02)01851-4.
3
From genetic footprinting to antimicrobial drug targets: examples in cofactor biosynthetic pathways.
J Bacteriol. 2002 Aug;184(16):4555-72. doi: 10.1128/JB.184.16.4555-4572.2002.
4
Diacylglyceride kinases, sphingosine kinases and NAD kinases: distant relatives of 6-phosphofructokinases.
Trends Biochem Sci. 2002 Jun;27(6):273-5. doi: 10.1016/s0968-0004(02)02093-5.
5
The functions of Ca(2+) in bacteria: a role for EF-hand proteins?
Trends Microbiol. 2002 Feb;10(2):87-93. doi: 10.1016/s0966-842x(01)02284-3.
7
Structural and functional characterization of human NAD kinase.
Biochem Biophys Res Commun. 2001 Oct 19;288(1):69-74. doi: 10.1006/bbrc.2001.5735.
8
Molecular characterization of Escherichia coli NAD kinase.
Eur J Biochem. 2001 Aug;268(15):4359-65. doi: 10.1046/j.1432-1327.2001.02358.x.
9
The biosynthesis of nicotinamide adenine dinucleotides in bacteria.
Vitam Horm. 2001;61:103-19. doi: 10.1016/s0083-6729(01)61003-3.
10
Inorganic Polyphosphate/ATP-NAD kinase of Micrococcus flavus and Mycobacterium tuberculosis H37Rv.
Biochem Biophys Res Commun. 2000 Sep 16;276(1):57-63. doi: 10.1006/bbrc.2000.3433.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验