Kobune Masayoshi, Kawano Yutaka, Ito Yoshinori, Chiba Hiroki, Nakamura Kiminori, Tsuda Hajime, Sasaki Katsunori, Dehari Hironari, Uchida Hiroaki, Honmou Osamu, Takahashi Sho, Bizen Akiko, Takimoto Rishu, Matsunaga Takuya, Kato Junji, Kato Kazunori, Houkin Kiyohiro, Niitsu Yoshiro, Hamada Hirofumi
Dept. of Molecular Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.
Exp Hematol. 2003 Aug;31(8):715-22. doi: 10.1016/s0301-472x(03)00177-2.
To compare the hematopoietic support provided by telomerized human mesenchymal stem cells (MSCs) and telomerized MSC-derived stromal cells.
We transfected the human telomerase catalytic subunit (hTERT) gene into primary MSCs to establish hTERT-transduced MSCs (hTERT-MSCs). Stromal induction of hTERT-MSCs was performed by replacing the culture medium with Dexter-type culture medium. Hematopoietic support was examined by coculture with cord blood CD34(+) cells.
The hTERT-MSCs were morphologically identical with the primary MSCs and expressed surface antigens including CD105, CD73, and CD166. hTERT-MSCs showed a similar doubling time as primary MSCs and continued to proliferate to over 80 population doublings (PD), although the primary MSCs underwent crisis in vitro at 16 PD. The osteogenic, chondrogenic, adipogenic, neurogenic, and stromal differentiation potential of hTERT-MSCs were maintained up to at least 40 PD. The degree of expansion of CD34(+) cells and total number of colony-forming units in culture (CFU-C) upon 12-day coculture with the hTERT-MSC-derived stromal cells were nearly the same as those upon 12-day coculture with hTERT-MSCs (CD34, 33.0-fold+/-2.8-fold vs 36.1-fold+/-1.7-fold of the initial cell number; CFUs, 344.4-fold+/-62.5-fold vs 239.3-fold+/-87.0-fold; CFU-mix, 368.4-fold+/-113.7-fold vs 341.3-fold+/-234.3-fold). However, on day 18 of coculture, the number of cobblestone areas (CA) observed beneath the stromal cells was 15 times higher than that beneath hTERT-MSCs (CA, 146.9+/-54.6 vs 9.4+/-8.1, p<0.01).
Stromal induction of hTERT-MSCs exclusively enhanced the support of CA formation provided by hTERT-MSCs. Our human hTERT-MSCs will be useful for elucidating the mechanism of the formation of CAs.
比较端粒化人间充质干细胞(MSCs)和端粒化MSC来源的基质细胞提供的造血支持。
我们将人端粒酶催化亚基(hTERT)基因转染到原代MSCs中,以建立hTERT转导的MSCs(hTERT-MSCs)。通过用德克斯特型培养基替换培养基对hTERT-MSCs进行基质诱导。通过与脐血CD34(+)细胞共培养来检测造血支持。
hTERT-MSCs在形态上与原代MSCs相同,并表达包括CD105、CD73和CD166在内的表面抗原。hTERT-MSCs显示出与原代MSCs相似的倍增时间,并持续增殖至超过80个群体倍增(PD),尽管原代MSCs在体外16个PD时经历危机。hTERT-MSCs的成骨、软骨、脂肪、神经和基质分化潜能至少维持到40个PD。与hTERT-MSC来源的基质细胞共培养12天时,CD34(+)细胞的扩增程度和培养中集落形成单位(CFU-C)的总数与与hTERT-MSCs共培养12天时几乎相同(CD34,初始细胞数的33.0倍±2.8倍对36.1倍±1.7倍;CFUs,344.4倍±62.5倍对239.3倍±87.0倍;CFU-mix,368.4倍±113.7倍对341.3倍±234.3倍)。然而,在共培养第18天时,在基质细胞下方观察到的鹅卵石区域(CA)数量比在hTERT-MSCs下方高15倍(CA,146.9±54.6对9.4±8.1,p<0.01)。
hTERT-MSCs的基质诱导专门增强了hTERT-MSCs提供的CA形成支持。我们的人hTERT-MSCs将有助于阐明CA形成的机制。