Suppr超能文献

FLOWERING LOCUS C活性减弱作为拟南芥夏季一年生开花行为进化的一种机制。

Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior in Arabidopsis.

作者信息

Michaels Scott D, He Yuehui, Scortecci Katia C, Amasino Richard M

机构信息

Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA.

出版信息

Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):10102-7. doi: 10.1073/pnas.1531467100. Epub 2003 Aug 6.

Abstract

Plant species have evolved a wide variety of flowering habits, each adapted to maximize reproductive success in their local environment. Even within a species, accessions from different environments can exhibit markedly different flowering behavior. In Arabidopsis, some accessions are rapid-cycling summer annuals, whereas others accessions are late flowering and vernalization responsive and thus behave as winter annuals. Two genes, FLOWERING LOCUS C (FLC) and FRIGIDA (FRI), interact synergistically to confer the winter-annual habit. Previous work has shown that many summer-annual accessions contain null mutations in the FRI gene; thus it appears that these summer-annual accessions have arisen from winter-annual ancestors by losing FRI function. In this work we demonstrate that naturally occurring allelic variation in FLC has provided another route to the evolution of summer-annual flowering behavior in Arabidopsis. We have identified two summer-annual accessions, Da (1)-12 and Shakhdara, that contain functional alleles of FRI, but are early flowering because of weak alleles of FLC. We have also determined that the weak allele of FLC found in Landsberg erecta is naturally occurring. Unlike accessions that have arisen because of loss-of-function mutations in FRI, the FLC alleles from Da (1)-12, Shakhdara, and Landsberg erecta are not nulls; however, they exhibit lower steady-state mRNA levels than strong alleles of FLC. Sequence analysis indicates that these weak alleles of FLC have arisen independently at least twice during the course of evolution.

摘要

植物物种进化出了多种多样的开花习性,每种习性都适应于在其当地环境中最大化繁殖成功率。即使在一个物种内,来自不同环境的种质也可能表现出明显不同的开花行为。在拟南芥中,一些种质是快速循环的夏季一年生植物,而其他种质则开花较晚且对春化有响应,因此表现为冬季一年生植物。两个基因,开花位点C(FLOWERING LOCUS C,FLC)和寒冻(FRIGIDA,FRI),协同作用赋予冬季一年生习性。先前的研究表明,许多夏季一年生种质在FRI基因中存在无效突变;因此,这些夏季一年生种质似乎是通过丧失FRI功能从冬季一年生祖先演化而来的。在这项研究中,我们证明FLC中自然发生的等位基因变异为拟南芥夏季一年生开花行为的进化提供了另一条途径。我们鉴定出两个夏季一年生种质,Da(1)-12和沙赫达拉,它们含有FRI的功能等位基因,但由于FLC的弱等位基因而开花较早。我们还确定在直立型兰茨贝格中发现的FLC弱等位基因是自然发生的。与因FRI功能丧失突变而产生的种质不同,来自Da(1)-12、沙赫达拉和直立型兰茨贝格的FLC等位基因并非无效;然而,它们的稳态mRNA水平低于FLC的强等位基因。序列分析表明,这些FLC弱等位基因在进化过程中至少独立出现过两次。

相似文献

1
Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior in Arabidopsis.
Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):10102-7. doi: 10.1073/pnas.1531467100. Epub 2003 Aug 6.
2
Analysis of the molecular basis of flowering time variation in Arabidopsis accessions.
Plant Physiol. 2003 Jun;132(2):1107-14. doi: 10.1104/pp.103.021212. Epub 2003 May 22.
3
Role of FRIGIDA and FLOWERING LOCUS C in determining variation in flowering time of Arabidopsis.
Plant Physiol. 2005 Jun;138(2):1163-73. doi: 10.1104/pp.105.061309. Epub 2005 May 20.
4
FRIGIDA-independent variation in flowering time of natural Arabidopsis thaliana accessions.
Genetics. 2005 Jul;170(3):1197-207. doi: 10.1534/genetics.104.036533. Epub 2005 May 23.
5
Standing genetic variation in FRIGIDA mediates experimental evolution of flowering time in Arabidopsis.
Mol Ecol. 2009 May;18(9):2039-49. doi: 10.1111/j.1365-294X.2009.04145.x. Epub 2009 Mar 20.
6
FRIGIDA-related genes are required for the winter-annual habit in Arabidopsis.
Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):3281-5. doi: 10.1073/pnas.0306778101. Epub 2004 Feb 18.
9
FRIGIDA LIKE 2 is a functional allele in Landsberg erecta and compensates for a nonsense allele of FRIGIDA LIKE 1.
Plant Physiol. 2006 Dec;142(4):1728-38. doi: 10.1104/pp.106.085571. Epub 2006 Oct 20.
10
Functional analysis of the Landsberg erecta allele of FRIGIDA.
BMC Plant Biol. 2014 Aug 13;14:218. doi: 10.1186/s12870-014-0218-2.

引用本文的文献

1
Research progress on delayed flowering under short-day condition in .
Front Plant Sci. 2025 Mar 7;16:1523788. doi: 10.3389/fpls.2025.1523788. eCollection 2025.
2
Role of in Regulating Soybean Nodule Formation Under Cold Stress.
Int J Mol Sci. 2025 Jan 21;26(3):879. doi: 10.3390/ijms26030879.
3
C-TERMINAL DOMAIN PHOSPHATASE-LIKE 1 promotes flowering with TAF15b by repressing the floral repressor gene FLOWERING LOCUS C.
Mol Cells. 2024 Oct;47(10):100114. doi: 10.1016/j.mocell.2024.100114. Epub 2024 Sep 16.
5
7
AGO1 and HSP90 buffer different genetic variants in Arabidopsis thaliana.
Genetics. 2023 Feb 9;223(2). doi: 10.1093/genetics/iyac163.
9
Characterization of an autonomous pathway complex that promotes flowering in Arabidopsis.
Nucleic Acids Res. 2022 Jul 22;50(13):7380-7395. doi: 10.1093/nar/gkac551.

本文引用的文献

1
MDM-1 and MDM-2: two mutator-derived MITE families in rice.
J Mol Evol. 2003 Mar;56(3):255-64. doi: 10.1007/s00239-002-2397-y.
2
Bay-0 x Shahdara recombinant inbred line population: a powerful tool for the genetic dissection of complex traits in Arabidopsis.
Theor Appl Genet. 2002 May;104(6-7):1173-1184. doi: 10.1007/s00122-001-0825-9. Epub 2002 Feb 13.
4
6
Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time.
Science. 2000 Oct 13;290(5490):344-7. doi: 10.1126/science.290.5490.344.
7
The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC).
Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3753-8. doi: 10.1073/pnas.97.7.3753.
8
Natural allelic variation identifies new genes in the Arabidopsis circadian system.
Plant J. 1999 Oct;20(1):67-77. doi: 10.1046/j.1365-313x.1999.00577.x.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验