Günther Michael, Ruder Hanns
Eberhard-Karls-Universität, Institut für Astronomie und Astrophysik, Theoretische Astrophysik, Biomechanik-Gruppe, Auf der Morgenstelle 10C, 72076 Tübingen, Germany.
Biol Cybern. 2003 Aug;89(2):89-106. doi: 10.1007/s00422-003-0414-x. Epub 2003 May 20.
To test the lambda-model version of the equilibrium point hypothesis both for feasibility and validity with respect to the control of terrestrial locomotion, we developed a two-dimensional, eleven-segment musculoskeletal model of the human body including 14 muscle-tendon complexes per leg, three-segment feet, and a physiologically based model of foot-ground interaction. Human walking was synthesized by numerical integration of the coupled muscle-tendon and rigid body dynamics. To this end a control algorithm based on the lambda-model was implemented in the model providing muscle stimulation patterns that guaranteed dynamically stable walking including a balanced trunk. Thus, the timing of the movement is not preset by a central pattern generator but emerges from the interaction of the musculoskeletal system with the control algorithm. The control parameters were found in a trial-and-error approach. The feedforward part of the control scheme consists of just two target configurations each of which is composed of a set of one nominal length per muscle (lambda-model). Variation of gravity reveals that (1) the synthesized walking patterns are close to ballistic walking and (2) this muscularly induced natural walking can only be initiated and maintained in the range between about a tenth and three times earth-bound gravity. Our walking patterns are robust both against parameter variations and shuffling of the swing leg. We discuss our model with respect to gravity scaling, speed control, feedback delay, and the terms "equilibrium point hypothesis" and "central pattern generator."
为了测试平衡点假设的拉姆达模型版本在控制陆地运动方面的可行性和有效性,我们开发了一个二维的、包含十一个节段的人体肌肉骨骼模型,每条腿包括14个肌腱复合体、三段式足部以及一个基于生理学的足部与地面相互作用模型。通过对耦合的肌腱和刚体动力学进行数值积分来合成人类行走。为此,在模型中实现了一种基于拉姆达模型的控制算法,该算法提供肌肉刺激模式,以确保包括平衡躯干在内的动态稳定行走。因此,运动的时间不是由中央模式发生器预先设定的,而是由肌肉骨骼系统与控制算法的相互作用产生的。控制参数通过试错法找到。控制方案的前馈部分仅由两个目标配置组成,每个配置由每组肌肉的一个标称长度(拉姆达模型)组成。重力变化表明:(1)合成的行走模式接近弹道式行走;(2)这种由肌肉诱导的自然行走只能在大约十分之一到三倍地球重力的范围内启动和维持。我们的行走模式对参数变化和摆动腿的随机排列都具有鲁棒性。我们从重力缩放、速度控制、反馈延迟以及“平衡点假设”和“中央模式发生器”等方面讨论了我们的模型。