Suppr超能文献

Measuring in-vivo metabolism using nuclear magnetic resonance.

作者信息

Dobbins Robert L, Malloy Craig R

机构信息

Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Texas, USA.

出版信息

Curr Opin Clin Nutr Metab Care. 2003 Sep;6(5):501-9. doi: 10.1097/00075197-200309000-00003.

Abstract

PURPOSE OF REVIEW

This review introduces physiologists and clinical investigators to an ever-widening array of nuclear magnetic resonance applications. In particular, it highlights a multiple tracer technique that provides a comprehensive picture of metabolic processes within human liver.

RECENT FINDINGS

Magnetic resonance spectroscopy is an important technique for studying metabolism in the brain, liver, heart and skeletal muscle. One fundamental advantage is that the studies are inherently noninvasive, so time-dependent information can be obtained. For example, 31P nuclear magnetic resonance investigations indicate that greater maximal oxygen uptake and oxidative capacity in trained athletes can be partially attributed to adaptations enhancing the rates at which phosphocreatine and inorganic phosphate recover during stress. In-vivo measurements of lipids and glycogen by 1H and 13C spectroscopy demonstrate that accumulation of intracellular lipids and impaired rates of glycogen synthesis contribute to insulin resistance and type 2 diabetes mellitus. Similar techniques can be used to analyze blood and urine samples obtained during administration of 2H or 13C tracers to yield information that cannot be easily obtained by mass spectrometry. Additional information available from nuclear magnetic resonance yields a comprehensive picture of liver metabolic pathways from a single clinical study.

SUMMARY

A variety of magnetic resonance spectroscopy protocols have been validated and exploited for clinical studies, but relatively few investigators are comfortable with technical aspects of these protocols and utilize them for clinical research. Increased interaction between spectroscopists and other investigators is needed if the potential of nuclear magnetic resonance for studying in-vivo metabolism is to be fully realized.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验