Suppr超能文献

无创心电图成像(ECGI):广义极小残差(GMRes)方法的应用。

Noninvasive electrocardiographic imaging (ECGI): application of the generalized minimal residual (GMRes) method.

作者信息

Ramanathan Charulatha, Jia Ping, Ghanem Raja, Calvetti Daniela, Rudy Yoram

机构信息

Cardiac Bioelectricity Research and Training Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106-7207, USA.

出版信息

Ann Biomed Eng. 2003 Sep;31(8):981-94. doi: 10.1114/1.1588655.

Abstract

Electrocardiographic imaging (ECGI) is a developing imaging modality for cardiac electrophysiology and arrhythmias. It reconstructs epicardial potentials, electrograms, and isochrones from electrocardiographic body-surface potentials noninvasively. Current ECGI methodology employs Tikhonov regularization, which imposes constraints on the reconstructed potentials or their derivatives. This approach can sometimes reduce spatial resolution by smoothing the solution. Accuracy depends on a priori knowledge of solution characteristics and determination of an optimal regularization parameter. These properties led us to implement an independent, iterative approach for ECGI--the generalized minimal residual (GMRes) method--which does not apply constraints. GMRes was applied to experimental data during activation/repolarization of normal and infarcted hearts. GMRes reconstructions were compared to Tikhonov reconstructions and to measured "gold standards" in isolated hearts. Overall, the accuracy of GMRes solutions was similar to Tikhonov regularization. However, in certain cases GMRes recovered localized potential features (e.g., multiple potential minima), which were lost in the Tikhonov solution. Simultaneous use of these two complementary methods in clinical ECGI will ensure reliability and maximal extraction of diagnostic information in the absence of a priori information about a patient's condition.

摘要

心电图成像(ECGI)是一种用于心脏电生理学和心律失常的新兴成像方式。它能从体表心电图电位无创地重建心外膜电位、心电图和等时线。当前的ECGI方法采用蒂霍诺夫正则化,该方法对重建电位或其导数施加约束。这种方法有时会通过平滑解来降低空间分辨率。准确性取决于解的特征的先验知识以及最优正则化参数的确定。这些特性促使我们为ECGI实现一种独立的迭代方法——广义极小残差(GMRes)方法,该方法不施加约束。GMRes被应用于正常和梗死心脏激活/复极过程中的实验数据。将GMRes重建结果与蒂霍诺夫重建结果以及离体心脏中测量的“金标准”进行比较。总体而言,GMRes解的准确性与蒂霍诺夫正则化相似。然而,在某些情况下,GMRes恢复了局部电位特征(例如多个电位极小值),而这些特征在蒂霍诺夫解中丢失了。在临床ECGI中同时使用这两种互补方法将确保在缺乏患者病情先验信息的情况下诊断信息的可靠性和最大程度提取。

相似文献

3
In Vivo Validation of Electrocardiographic Imaging.体内心电图成像的验证。
JACC Clin Electrophysiol. 2017 Mar;3(3):232-242. doi: 10.1016/j.jacep.2016.11.012. Epub 2017 Feb 1.
8
Physiology-based regularization of the electrocardiographic inverse problem.基于生理学的心电图逆问题正则化
Med Biol Eng Comput. 2017 Aug;55(8):1353-1365. doi: 10.1007/s11517-016-1595-5. Epub 2016 Nov 21.

引用本文的文献

3
Electrocardiographic imaging in the atria.心房的心电图成像。
Med Biol Eng Comput. 2023 Apr;61(4):879-896. doi: 10.1007/s11517-022-02709-7. Epub 2022 Nov 12.
5
Electrocardiographic Imaging: A Comparison of Iterative Solvers.心电图成像:迭代求解器的比较
Front Physiol. 2021 Feb 3;12:620250. doi: 10.3389/fphys.2021.620250. eCollection 2021.

本文引用的文献

7
A noninvasive imaging modality for cardiac arrhythmias.一种用于心律失常的非侵入性成像模态。
Circulation. 2000 Oct 24;102(17):2152-8. doi: 10.1161/01.cir.102.17.2152.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验