Suppr超能文献

心电图成像中的时空信号与临床指标(一):预处理与双极电位

Spatial-Temporal Signals and Clinical Indices in Electrocardiographic Imaging (I): Preprocessing and Bipolar Potentials.

机构信息

Department of Signal Theory and Communications, Telematics and Computing Systems; Rey Juan Carlos University, Fuenlabrada, 28943 Madrid, Spain.

Center for Computational Simulation; Universidad Politécnica de Madrid; Boadilla, 28223 Madrid, Spain.

出版信息

Sensors (Basel). 2020 Jun 1;20(11):3131. doi: 10.3390/s20113131.

Abstract

During the last years, Electrocardiographic Imaging (ECGI) has emerged as a powerful and promising clinical tool to support cardiologists. Starting from a plurality of potential measurements on the torso, ECGI yields a noninvasive estimation of their causing potentials on the epicardium. This unprecedented amount of measured cardiac signals needs to be conditioned and adapted to current knowledge and methods in cardiac electrophysiology in order to maximize its support to the clinical practice. In this setting, many cardiac indices are defined in terms of the so-called bipolar electrograms, which correspond with differential potentials between two spatially close potential measurements. Our aim was to contribute to the usefulness of ECGI recordings in the current knowledge and methods of cardiac electrophysiology. For this purpose, we first analyzed the basic stages of conventional cardiac signal processing and scrutinized the implications of the spatial-temporal nature of signals in ECGI scenarios. Specifically, the stages of baseline wander removal, low-pass filtering, and beat segmentation and synchronization were considered. We also aimed to establish a mathematical operator to provide suitable bipolar electrograms from the ECGI-estimated epicardium potentials. Results were obtained on data from an infarction patient and from a healthy subject. First, the low-frequency and high-frequency noises are shown to be non-independently distributed in the ECGI-estimated recordings due to their spatial dimension. Second, bipolar electrograms are better estimated when using the criterion of the maximum-amplitude difference between spatial neighbors, but also a temporal delay in discrete time of about 40 samples has to be included to obtain the usual morphology in clinical bipolar electrograms from catheters. We conclude that spatial-temporal digital signal processing and bipolar electrograms can pave the way towards the usefulness of ECGI recordings in the cardiological clinical practice. The companion paper is devoted to analyzing clinical indices obtained from ECGI epicardial electrograms measuring waveform variability and repolarization tissue properties.

摘要

在过去的几年中,心电图成像是一种强大且有前途的临床工具,可用于支持心脏病专家。从躯干上的多个潜在测量值出发,心电图成像是一种对心外膜上潜在电活动的非侵入性估计。为了使这些前所未有的大量心脏信号最大程度地支持临床实践,需要对其进行调节和适应当前心脏电生理学中的知识和方法。在这种情况下,许多心脏指数是根据所谓的双极电图来定义的,这与两个空间上接近的潜在测量之间的差分电位相对应。我们的目标是为心电图成像在当前心脏电生理学的知识和方法中的应用做出贡献。为此,我们首先分析了传统心脏信号处理的基本阶段,并仔细研究了心电图成像场景中信号的时空性质的影响。具体而言,考虑了基线漂移去除、低通滤波、心动周期分段和同步的阶段。我们还旨在建立一个数学算子,以便从心电图成像估计的心外膜电位中提供合适的双极电图。结果是基于一名梗塞患者和一名健康受试者的数据获得的。首先,由于其空间维度,心电图成像记录中的低频和高频噪声显示出非独立分布。其次,当使用空间邻居之间最大幅度差的标准来估计双极电图时,可以更好地估计双极电图,但也必须包括离散时间中的大约 40 个样本的时间延迟,以从导管中获得通常的临床双极电图形态。我们得出结论,时空数字信号处理和双极电图可以为心电图成像在心脏病临床实践中的应用铺平道路。相关论文致力于分析从测量波形变异性和复极化组织特性的心外膜心电图中获得的临床指数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7274/7309141/c36b20cf0666/sensors-20-03131-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验