Dang Fuquan, Zhang Lihua, Jabasini Mohammad, Kaji Noritada, Baba Yoshinobu
Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, The University of Tokushima, CREST, Japan Science and Technology Corporation, Shomachi, Tokushima 770-8505, Japan.
Anal Chem. 2003 May 15;75(10):2433-9. doi: 10.1021/ac034110a.
The electrophoretic behavior of oligosaccharide isomers was investigated by microchip electrophoresis (micro-CE) coupled with videomicroscopy using maltose, cellobiose, maltriose, and panose as oligosaccharide isomer models. The present study revealed for the first time that the formation of a carbohydrate-phosphate complex is a pH-independent rapid process, whereas the formation of a carbohydrate-borate complex is a highly pH-dependent slow process. As a result, phosphate buffer gave much better separation on oligosaccharide isomers than borate and borate-Tris buffers over a wide pH range in micro-CE. The imaging analysis of the complete process of sample loading and injection with field-amplified stacking (FAS) demonstrated that FAS could be used as an efficient method for manipulating the shape of injected sample plugs, and thus improving the performance of micro-CE in the absence of electroosmotic flow. However, once the ionic strength mismatch between sample and running buffer reached a critical threshold, a further increase in ionic strength mismatch deteriorated the effect of FAS, resulting in a surprising decrease in separation efficiency and peak distortion. Under optimal conditions, high-resolution separation of some oligosaccharide isomers and a complex oligosaccharide mixture released from ribonuclease B was achieved using PMMA microchips with an effective separation channel of 30 mm.
以麦芽糖、纤维二糖、麦芽三糖和潘糖作为低聚糖异构体模型,采用微芯片电泳(micro-CE)结合视频显微镜研究了低聚糖异构体的电泳行为。本研究首次揭示,碳水化合物-磷酸盐复合物的形成是一个与pH无关的快速过程,而碳水化合物-硼酸盐复合物的形成是一个高度依赖pH的缓慢过程。因此,在微芯片电泳的较宽pH范围内,磷酸盐缓冲液对低聚糖异构体的分离效果比硼酸盐和硼酸盐- Tris缓冲液好得多。对采用场放大堆积(FAS)进样和加样的完整过程进行成像分析表明,FAS可作为一种有效方法来控制进样样品塞的形状,从而在无电渗流的情况下提高微芯片电泳的性能。然而,一旦样品与运行缓冲液之间的离子强度不匹配达到临界阈值,离子强度不匹配的进一步增加会使FAS的效果变差,导致分离效率惊人地降低和峰形畸变。在最佳条件下,使用有效分离通道为30 mm的聚甲基丙烯酸甲酯(PMMA)微芯片实现了一些低聚糖异构体和从核糖核酸酶B释放的复杂低聚糖混合物的高分辨率分离。