Brockwell David J, Paci Emanuele, Zinober Rebecca C, Beddard Godfrey S, Olmsted Peter D, Smith D Alastair, Perham Richard N, Radford Sheena E
School of Biochemistry and Molecular Biology, University of Leeds, LS2 9JT, UK.
Nat Struct Biol. 2003 Sep;10(9):731-7. doi: 10.1038/nsb968. Epub 2003 Aug 17.
Proteins show diverse responses when placed under mechanical stress. The molecular origins of their differing mechanical resistance are still unclear, although the orientation of secondary structural elements relative to the applied force vector is thought to have an important function. Here, by using a method of protein immobilization that allows force to be applied to the same all-beta protein, E2lip3, in two different directions, we show that the energy landscape for mechanical unfolding is markedly anisotropic. These results, in combination with molecular dynamics (MD) simulations, reveal that the unfolding pathway depends on the pulling geometry and is associated with unfolding forces that differ by an order of magnitude. Thus, the mechanical resistance of a protein is not dictated solely by amino acid sequence, topology or unfolding rate constant, but depends critically on the direction of the applied extension.
蛋白质在受到机械应力时会表现出不同的反应。尽管二级结构元件相对于施加力向量的取向被认为具有重要作用,但其不同机械抗性的分子起源仍不清楚。在这里,通过使用一种蛋白质固定方法,该方法允许在两个不同方向上对同一全β蛋白E2lip3施加力,我们表明机械展开的能量景观明显具有各向异性。这些结果与分子动力学(MD)模拟相结合,揭示出展开途径取决于拉伸几何形状,并与相差一个数量级的展开力相关。因此,蛋白质的机械抗性不仅由氨基酸序列、拓扑结构或展开速率常数决定,还严重取决于施加延伸的方向。