Suppr超能文献

延迟反馈对基于规则和信息整合类别学习的影响。

Delayed feedback effects on rule-based and information-integration category learning.

作者信息

Maddox W Todd, Ashby F Gregory, Bohil Corey J

机构信息

Department of Psychology, University of Texas at Austin 78712, USA.

出版信息

J Exp Psychol Learn Mem Cogn. 2003 Jul;29(4):650-62. doi: 10.1037/0278-7393.29.4.650.

Abstract

The effect of immediate versus delayed feedback on rule-based and information-integration category learning was investigated. Accuracy rates were examined to isolate global performance deficits, and model-based analyses were performed to identify the types of response strategies used by observers. Feedback delay had no effect on the accuracy of responding or on the distribution of best fitting models in the rule-based category-learning task. However, delayed feedback led to less accurate responding in the information-integration category-learning task. Model-based analyses indicated that the decline in accuracy with delayed feedback was due to an increase in the use of rule-based strategies to solve the information-integration task. These results provide support for a multiple-systems approach to category learning and argue against the validity of single-system approaches.

摘要

研究了即时反馈与延迟反馈对基于规则和信息整合类别学习的影响。通过检查准确率来分离整体表现缺陷,并进行基于模型的分析以确定观察者使用的反应策略类型。在基于规则的类别学习任务中,反馈延迟对反应准确率或最佳拟合模型的分布没有影响。然而,在信息整合类别学习任务中,延迟反馈导致反应准确率降低。基于模型的分析表明,延迟反馈导致的准确率下降是由于在解决信息整合任务时使用基于规则策略的增加。这些结果为类别学习的多系统方法提供了支持,并对单系统方法的有效性提出了质疑。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验