Dorazio Robert M, Royle J Andrew
U.S. Geological Survey, Florida Caribbean Science Center, 7920 NW 71 Street, Gainesville, Florida 32653, USA.
Biometrics. 2003 Jun;59(2):351-64. doi: 10.1111/1541-0420.00042.
We develop a parameterization of the beta-binomial mixture that provides sensible inferences about the size of a closed population when probabilities of capture or detection vary among individuals. Three classes of mixture models (beta-binomial, logistic-normal, and latent-class) are fitted to recaptures of snowshoe hares for estimating abundance and to counts of bird species for estimating species richness. In both sets of data, rates of detection appear to vary more among individuals (animals or species) than among sampling occasions or locations. The estimates of population size and species richness are sensitive to model-specific assumptions about the latent distribution of individual rates of detection. We demonstrate using simulation experiments that conventional diagnostics for assessing model adequacy, such as deviance, cannot be relied on for selecting classes of mixture models that produce valid inferences about population size. Prior knowledge about sources of individual heterogeneity in detection rates, if available, should be used to help select among classes of mixture models that are to be used for inference.
我们开发了一种贝塔二项混合模型的参数化方法,当捕获或检测概率在个体间存在差异时,该方法能对封闭种群的大小做出合理推断。三类混合模型(贝塔二项模型、逻辑正态模型和潜在类别模型)被用于拟合雪兔的重捕数据以估计种群数量,以及拟合鸟类物种计数数据以估计物种丰富度。在这两组数据中,检测率在个体(动物或物种)间的差异似乎比在采样时机或地点间的差异更大。种群大小和物种丰富度的估计对关于个体检测率潜在分布的特定模型假设很敏感。我们通过模拟实验证明,用于评估模型适用性的传统诊断方法,如偏差,不能用于选择能对种群大小做出有效推断的混合模型类别。如果有关于检测率个体异质性来源的先验知识,应将其用于帮助在用于推断的混合模型类别中进行选择。