Suppr超能文献

距离抽样检测函数的混合模型。

Mixture models for distance sampling detection functions.

作者信息

Miller David L, Thomas Len

机构信息

Centre for Research into Ecological and Environmental Modelling, and School of Mathematics and Statistics, University of St Andrews, St Andrews, Scotland, United Kingdom.

出版信息

PLoS One. 2015 Mar 20;10(3):e0118726. doi: 10.1371/journal.pone.0118726. eCollection 2015.

Abstract

We present a new class of models for the detection function in distance sampling surveys of wildlife populations, based on finite mixtures of simple parametric key functions such as the half-normal. The models share many of the features of the widely-used "key function plus series adjustment" (K+A) formulation: they are flexible, produce plausible shapes with a small number of parameters, allow incorporation of covariates in addition to distance and can be fitted using maximum likelihood. One important advantage over the K+A approach is that the mixtures are automatically monotonic non-increasing and non-negative, so constrained optimization is not required to ensure distance sampling assumptions are honoured. We compare the mixture formulation to the K+A approach using simulations to evaluate its applicability in a wide set of challenging situations. We also re-analyze four previously problematic real-world case studies. We find mixtures outperform K+A methods in many cases, particularly spiked line transect data (i.e., where detectability drops rapidly at small distances) and larger sample sizes. We recommend that current standard model selection methods for distance sampling detection functions are extended to include mixture models in the candidate set.

摘要

我们提出了一类新的模型,用于野生动物种群距离抽样调查中的检测函数,该模型基于简单参数关键函数(如半正态函数)的有限混合。这些模型具有许多广泛使用的“关键函数加级数调整”(K+A)公式的特征:它们灵活,用少量参数就能产生合理的形状,除距离外还能纳入协变量,并且可以使用最大似然法进行拟合。与K+A方法相比,一个重要优势是混合函数自动单调非增且非负,因此无需进行约束优化来确保满足距离抽样假设。我们使用模拟将混合公式与K+A方法进行比较,以评估其在一系列具有挑战性的情况下的适用性。我们还重新分析了四个以前有问题的实际案例研究。我们发现,在许多情况下,混合模型优于K+A方法,特别是在尖峰线样带数据(即小距离处可检测性迅速下降的情况)和较大样本量的情况下。我们建议将当前距离抽样检测函数的标准模型选择方法扩展到包括候选集中的混合模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8391/4368789/7435a86c9104/pone.0118726.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验