Suppr超能文献

用于从心电图中识别心律失常的时间抽象与归纳逻辑编程。

Temporal abstraction and inductive logic programming for arrhythmia recognition from electrocardiograms.

作者信息

Carrault G, Cordier M-O, Quiniou R, Wang F

机构信息

LTSI, Campus de Beaulieu, 35042 Rennes Cedex, France.

出版信息

Artif Intell Med. 2003 Jul;28(3):231-63. doi: 10.1016/s0933-3657(03)00066-6.

Abstract

This paper proposes a novel approach to cardiac arrhythmia recognition from electrocardiograms (ECGs). ECGs record the electrical activity of the heart and are used to diagnose many heart disorders. The numerical ECG is first temporally abstracted into series of time-stamped events. Temporal abstraction makes use of artificial neural networks to extract interesting waves and their features from the input signals. A temporal reasoner called a chronicle recogniser processes such series in order to discover temporal patterns called chronicles which can be related to cardiac arrhythmias. Generally, it is difficult to elicit an accurate set of chronicles from a doctor. Thus, we propose to learn automatically from symbolic ECG examples the chronicles discriminating the arrhythmias belonging to some specific subset. Since temporal relationships are of major importance, inductive logic programming (ILP) is the tool of choice as it enables first-order relational learning. The approach has been evaluated on real ECGs taken from the MIT-BIH database. The performance of the different modules as well as the efficiency of the whole system is presented. The results are rather good and demonstrate that integrating numerical techniques for low level perception and symbolic techniques for high level classification is very valuable.

摘要

本文提出了一种从心电图(ECG)中识别心律失常的新方法。心电图记录心脏的电活动,用于诊断多种心脏疾病。首先将数字化心电图在时间上抽象为一系列带时间戳的事件。时间抽象利用人工神经网络从输入信号中提取感兴趣的波形及其特征。一个名为编年史识别器的时间推理器处理这样的序列,以发现与心律失常相关的称为编年史的时间模式。一般来说,很难从医生那里得到一组准确的编年史。因此,我们建议从符号化的心电图示例中自动学习区分属于某些特定子集的心律失常的编年史。由于时间关系至关重要,归纳逻辑编程(ILP)是首选工具,因为它能够进行一阶关系学习。该方法已在取自麻省理工学院-比哈尔数据库的真实心电图上进行了评估。展示了不同模块的性能以及整个系统的效率。结果相当不错,表明将用于低级感知的数值技术与用于高级分类的符号技术相结合非常有价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验